receptor-binding domain

受体结合域
  • 文章类型: Journal Article
    孕妇在受孕前或怀孕期间接种疫苗可增强新生儿对许多病原体的免疫保护。进行可行性实验以确定猴子是否可用于模拟针对SARS-CoV-2的母体抗体的胎盘转移。用包含受体结合结构域人IgG1-Fc融合蛋白(RBD-Fc)的佐剂重组蛋白抗原对六只成年恒河猴进行免疫,该蛋白抗原包含来自祖先武汉或Gamma变体的蛋白序列。雌性猴子产生了强大而持续的抗SARS-CoV-2抗体反应。从分娩后的婴儿收集的血液样本证实了高水平的尖峰特异性IgG的产前转移,与足月孕妇IgG滴度呈正相关。此外,ACE2中和的体外试验表明,婴儿IgG表现出抗原特异性,反映了先前用武汉或γ变异抗原进行母体免疫。当测定中的变体与疫苗RBD序列更接近时,所有血清均显示出更强的ACE2-RBD结合抑制,而不是与更远相关的变体(即,Delta和Omicron)。猴子是一种有价值的动物模型,用于评估可以促进母婴健康的新疫苗。Further,研究结果强调了佐剂化重组RBD-Fc疫苗引发的免疫保护的持久性和安全性.
    Maternal vaccinations administered prior to conception or during pregnancy enhance the immune protection of newborn infants against many pathogens. A feasibility experiment was conducted to determine if monkeys can be used to model the placental transfer of maternal antibody against SARS-CoV-2. Six adult rhesus monkeys were immunized with adjuvanted recombinant-protein antigens comprised of receptor-binding domain human IgG1-Fc fusion proteins (RBD-Fc) containing protein sequences from the ancestral-Wuhan or Gamma variants. The female monkeys mounted robust and sustained anti-SARS-CoV-2 antibody responses. Blood samples collected from their infants after delivery verified prenatal transfer of high levels of spike-specific IgG, which were positively correlated with maternal IgG titers at term. In addition, an in vitro test of ACE2 neutralization indicated that the infants\' IgG demonstrated antigen specificity, reflecting prior maternal immunization with either Wuhan or Gamma-variant antigens. All sera showed stronger ACE2-RBD binding inhibition when variants in the assay more closely resembled the vaccine RBD sequence than with more distantly related variants (i.e., Delta and Omicron). Monkeys are a valuable animal model for evaluating new vaccines that can promote maternal and infant health. Further, the findings highlight the enduring nature and safety of the immune protection elicited by an adjuvanted recombinant RBD-Fc vaccine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三种高致病性冠状病毒(CoV),SARS-CoV-2,SARS-CoV,还有MERS-CoV,属于β-CoV属,引起了疫情或流行病。SARS-CoV-2已经进化成许多变体,对当前疫苗的抗性增加。这些CoV的刺突(S)蛋白及其受体结合域(RBD)片段是重要的疫苗靶标;然而,SARS-CoV-2Omicron变体的RBD高度突变,针对该区域的基于祖先的疫苗引起的中和抗体无效,强调需要对SARS-CoV-2变体和其他具有大流行潜力的CoV具有广谱效力的有效疫苗。这项研究描述了一种泛β-CoV亚单位疫苗,Om-S-MERS-RBD,通过将MERS-CoV的保守且高效的RBD融合到RBD截短的SARS-CoV-2OmicronS蛋白中,并在小鼠模型中评价其中和免疫原性和保护功效。Om-S-MERS-RBD形成构象结构,保持有效的功能和抗原性,并有效结合MERS-CoV受体,人二肽基肽酶4和MERS-CoVRBD或SARS-CoV-2S特异性抗体。用Om-S-MERS-RBD和佐剂(明矾加单磷酰脂质A)免疫小鼠可诱导针对假型MERS-CoV的广泛中和抗体,SARS-CoV,和SARS-CoV-2原始菌株,以及对RBD截短的OmicronS蛋白具有特异性的T细胞应答。此外,用Omicron-S-RBD蛋白引发后,对SARS-CoV-2Omicron亚变体的中和活性得到了有效改善。调节Om-S-MERS-RBD蛋白保护小鼠免受SARS-CoV-2Omicron变体的攻击,MERS-CoV,和SARS-CoV,显着降低肺部病毒滴度。总的来说,这些发现表明Om-S-MERS-RBD蛋白可以作为一种有效的通用亚单位疫苗来预防MERS-CoV感染,SARS-CoV,SARS-CoV-2及其变体。
    目标:冠状病毒(CoV),SARS-CoV-2,SARS-CoV,还有MERS-CoV,2019年冠状病毒病、SARS、MERS,不断威胁人类健康。这些CoV的刺突(S)蛋白及其受体结合域(RBD)片段是关键的疫苗靶标。然而,SARS-CoV-2变种的高度突变的RBD,尤其是Omicron,显着降低了当前疫苗对SARS-CoV-2变体的效力。在此,通过将MERS-CoV的有效且保守的RBD融合到RBD截短的OmicronS蛋白中来设计基于蛋白质的泛β-CoV亚单位疫苗。所得疫苗保持了有效的功能性和抗原性,诱导针对所有这些高致病性人类CoV的广泛中和抗体,并引发OmicronS特异性细胞免疫反应,保护免疫小鼠免受SARS-CoV-2Omicron,SARS-CoV,和MERS-CoV感染。一起来看,本研究合理设计了具有广谱功效的泛β-CoV亚单位疫苗,该疫苗具有开发作为针对SARS-CoV-2变体和其他具有大流行潜力的CoV的有效通用疫苗的潜力。
    Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, belonging to the genus beta-CoV, have caused outbreaks or pandemics. SARS-CoV-2 has evolved into many variants with increased resistance to the current vaccines. Spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are important vaccine targets; however, the RBD of the SARS-CoV-2 Omicron variant is highly mutated, rending neutralizing antibodies elicited by ancestral-based vaccines targeting this region ineffective, emphasizing the need for effective vaccines with broad-spectrum efficacy against SARS-CoV-2 variants and other CoVs with pandemic potential. This study describes a pan-beta-CoV subunit vaccine, Om-S-MERS-RBD, by fusing the conserved and highly potent RBD of MERS-CoV into an RBD-truncated SARS-CoV-2 Omicron S protein, and evaluates its neutralizing immunogenicity and protective efficacy in mouse models. Om-S-MERS-RBD formed a conformational structure, maintained effective functionality and antigenicity, and bind efficiently to MERS-CoV receptor, human dipeptidyl peptidase 4, and MERS-CoV RBD or SARS-CoV-2 S-specific antibodies. Immunization of mice with Om-S-MERS-RBD and adjuvants (Alum plus monophosphoryl lipid A) induced broadly neutralizing antibodies against pseudotyped MERS-CoV, SARS-CoV, and SARS-CoV-2 original strain, as well as T-cell responses specific to RBD-truncated Omicron S protein. Moreover, the neutralizing activity against SARS-CoV-2 Omicron subvariants was effectively improved after priming with an Omicron-S-RBD protein. Adjuvanted Om-S-MERS-RBD protein protected mice against challenge with SARS-CoV-2 Omicron variant, MERS-CoV, and SARS-CoV, significantly reducing viral titers in the lungs. Overall, these findings indicated that Om-S-MERS-RBD protein could develop as an effective universal subunit vaccine to prevent infections with MERS-CoV, SARS-CoV, SARS-CoV-2, and its variants.
    OBJECTIVE: Coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, the respective causative agents of coronavirus disease 2019, SARS, and MERS, continually threaten human health. The spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are critical vaccine targets. Nevertheless, the highly mutated RBD of SARS-CoV-2 variants, especially Omicron, significantly reduces the efficacy of current vaccines against SARS-CoV-2 variants. Here a protein-based pan-beta-CoV subunit vaccine is designed by fusing the potent and conserved RBD of MERS-CoV into an RBD-truncated Omicron S protein. The resulting vaccine maintained effective functionality and antigenicity, induced broadly neutralizing antibodies against all of these highly pathogenic human CoVs, and elicited Omicron S-specific cellular immune responses, protecting immunized mice from SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV infections. Taken together, this study rationally designed a pan-beta-CoV subunit vaccine with broad-spectrum efficacy, which has the potential for development as an effective universal vaccine against SARS-CoV-2 variants and other CoVs with pandemic potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    受体结合域(RBD)对于了解严重的急性呼吸综合征冠状病毒(SARS-CoV-2)如何识别和感染宿主细胞至关重要。壳寡糖(CS)表现出不同的抗病毒活性,其衍生物在阻断SARS-CoV-2感染方面显示出显着的功效。因此,这项研究采用了光谱学,病毒感染的细胞实验,和分子模拟研究CS与SARS-CoV-2RBD的分子相互作用,以及它们的机制。在光谱实验中,具有不同分子量的所有四种CS变体形成与RBD的相互作用。这些变体增加了HEK293ACE2细胞对SARS-CoV-2侵袭的抗性。分子对接显示4种CS变异体可通过氢键或盐桥相互作用与RBD结合,形成稳定的复合物。与其他CS变体相比,壳聚糖四糖对HEK293ACE2细胞提供了更强的保护,并显示了更高的分子对接评分。通过分子动力学模拟方法进一步研究了几丁四糖的最佳对接构象。本研究为靶向RBD抑制剂的开发奠定了坚实的理论基础,以及针对新型冠状病毒的药物筛选和应用。
    The receptor-binding domain (RBD) is crucial for understanding how severe acute respiratory syndrome coronavirus (SARS-CoV-2) recognizes and infects host cells. Chitooligosaccharide (CS) exhibits diverse antiviral activities, with its derivatives showing remarkable efficacy in blocking SARS-CoV-2 infection. Thus, this study employed spectroscopy, virus-infected cell experiments, and molecular simulation to investigate the molecular interactions between CS and SARS-CoV-2 RBD, as well as their mechanisms. In spectroscopic experiments, all four CS variants with different molecular weights formed interactions with the RBD. These variants increased the resistance of HEK293ACE2 cells to SARS-CoV-2 invasion. Molecular docking revealed that the four CS variants could bind to the RBD through hydrogen bonding or salt-bridge interactions, forming stable complexes. Chitotetraose provided stronger protection to HEK293ACE2 cells compared to other CS variants and displayed higher molecular docking scores. Further investigation into the optimal docking conformation of chitotetraose was conducted through molecular dynamics simulation methods. This study lays a solid theoretical foundation and provides a scientific basis for the development of targeted RBD inhibitors, as well as drug screening and application against novel coronaviruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    SARS-CoV-2的快速进化导致了许多变体的出现,对公共卫生监测构成重大挑战。临床基因组测序,虽然有价值,在捕获普通人群中循环变异的完整流行病学动态方面存在局限性。这项研究利用废水样品的受体结合域(RBD)扩增子测序来监测埃尔帕索的SARS-CoV-2群落动态和进化,TX.超过17个月,我们鉴定了91个变异体,并观察到从BA.2到BA.2.12.1,BA4和5,BQ.1和XBB.1.5的显性变异体的波。我们的研究结果表明,早期发现了变异并识别了未报告的暴发,虽然与当地的临床基因组测序数据表现出很强的一致性,state,和国家层面。阿尔法多样性分析揭示了显著的周期性变化,在冬季和爆发滞后阶段观察到最高的多样性,可能是由于在疫情增长阶段之前变体之间的竞争较低。数据强调了低传播期对快速突变和变异进化的重要性。这项研究强调了将RBD扩增子测序与废水监测整合在跟踪病毒进化中的有效性。理解变异的出现,加强公共卫生准备。
    Rapid evolution of SARS-CoV-2 has resulted in the emergence of numerous variants, posing significant challenges to public health surveillance. Clinical genome sequencing, while valuable, has limitations in capturing the full epidemiological dynamics of circulating variants in the general population. This study utilized receptor-binding domain (RBD) amplicon sequencing of wastewater samples to monitor the SARS-CoV-2 community dynamics and evolution in El Paso, TX. Over 17 months, we identified 91 variants and observed waves of dominant variants transitioning from BA.2 to BA.2.12.1, BA.4&5, BQ.1, and XBB.1.5. Our findings demonstrated early detection of variants and identification of unreported outbreaks, while showing strong consistency with clinical genome sequencing data at the local, state, and national levels. Alpha diversity analyses revealed significant periodical variations, with the highest diversity observed in winter and the outbreak lag phases, likely due to lower competition among variants before the outbreak growth phase. The data underscores the importance of low transmission periods for rapid mutation and variant evolution. This study highlights the effectiveness of integrating RBD amplicon sequencing with wastewater surveillance in tracking viral evolution, understanding variant emergence, and enhancing public health preparedness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高致病性冠状病毒SARS-CoV-2和SARS-CoV导致了COVID-19大流行和SARS爆发,分别。SARS-CoV-2的刺突(S)蛋白的受体结合域(RBD),特别是Omicron变体,有频繁的突变,导致当前COVID-19疫苗对新变体的效率降低。这里,我们通过删除SARS-CoV-2Omicron变体的突变型RBD(SARS2-S(RBD-del))或将该突变型RBD替换为SARS-CoV保守且有效的RBD(SARS2-S(SARS-RBD)),设计了两种脂质纳米颗粒包裹的mRNA疫苗.两种mRNA疫苗在不同温度下稳定不同的时间段。与SARS2-S(RBD-del)mRNA不同,SARS2-S(SARS-RBD)mRNA引起有效的T细胞反应和对SARS-CoV-2S和SARS-CoVRBD蛋白具有特异性的有效抗体。它诱导了针对假型SARS-CoV-2和SARS-CoV感染的强中和抗体,并通过显着降低Omicron攻击后肺中的病毒滴度来保护免疫小鼠免受SARS-CoV-2Omicron变体和SARS-CoV的攻击,并完全防止SARS-CoV引起的体重减轻和死亡。SARS2-S(SARS-RBD)免疫的血清抗体保护初治小鼠免受SARS-CoV攻击,其保护功效与中和抗体滴度呈正相关。这些发现表明,这种mRNA疫苗具有开发作为针对当前和未来SARS-CoV-2变体和SARS-CoV的有效疫苗的潜力。
    The highly pathogenic coronaviruses SARS-CoV-2 and SARS-CoV have led to the COVID-19 pandemic and SARS outbreak, respectively. The receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2, particularly the Omicron variant, has frequent mutations, resulting in the reduced efficiency of current COVID-19 vaccines against new variants. Here, we designed two lipid nanoparticle-encapsulated mRNA vaccines by deleting the mutant RBD of the SARS-CoV-2 Omicron variant (SARS2-S (RBD-del)) or by replacing this mutant RBD with the conserved and potent RBD of SARS-CoV (SARS2-S (SARS-RBD)). Both mRNA vaccines were stable at various temperatures for different time periods. Unlike SARS2-S (RBD-del) mRNA, SARS2-S (SARS-RBD) mRNA elicited effective T-cell responses and potent antibodies specific to both SARS-CoV-2 S and SARS-CoV RBD proteins. It induced strong neutralizing antibodies against pseudotyped SARS-CoV-2 and SARS-CoV infections and protected immunized mice from the challenge of the SARS-CoV-2 Omicron variant and SARS-CoV by significantly reducing the viral titers in the lungs after Omicron challenge and by completely preventing SARS-CoV-induced weight loss and death. SARS2-S (SARS-RBD)-immunized serum antibodies protected naïve mice from the SARS-CoV challenge, with its protective efficacy positively correlating with the neutralizing antibody titers. These findings indicate that this mRNA vaccine has the potential for development as an effective vaccine against current and future SARS-CoV-2 variants and SARS-CoV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米抗体,来自骆驼或鲨鱼重链抗体可变域的单结构域抗体,具有独特的属性,尺寸小,强结合亲和力,易于构建通用格式,高中和活性,保护功效,和大规模制造能力。纳米抗体已成为开发具有多种应用的纳米生物技术的有效研究工具。三种高致病性冠状病毒(CoV),SARS-CoV-2,SARS-CoV,还有MERS-CoV,引起了严重的疫情或全球大流行,并继续对全球公共卫生构成威胁。病毒刺突(S)蛋白及其同源受体结合域(RBD),启动病毒进入并在病毒发病机理中起关键作用,是重要的治疗靶点。这篇综述描述了致病性人类CoV,包括病毒结构和蛋白质,和S蛋白介导的病毒进入过程。它还总结了针对这些CoV的纳米抗体开发的最新进展,专注于那些靶向S蛋白和RBD。最后,我们讨论了提高纳米抗体对新出现的SARS-CoV-2变种和其他具有大流行潜力的CoV的疗效的潜在策略.它将为合理设计和评估针对新出现和重新出现的病原体的治疗剂提供重要信息。
    Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:SARS-CoV-2免疫接种对于有感染风险的脆弱实体器官移植(SOT)受者至关重要。然而,有人担心免疫原性欠佳,尤其是在体液免疫(HMI),以及对细胞介导的免疫(CMI)反应的有限探索。这项研究的主要目的是评估SOT接受者中ChAdOx1nCoV-19疫苗接种的免疫原性。次要终点是评估SOT受者免疫后影响免疫原性和不良事件(AE)的因素。
    方法:所有在12周间隔内接受两剂ChAdOx1nCoV-19疫苗的成人SOT受者,通过评估抗受体结合域(RBD)IgG水平和CMI,通过研究SARS-CoV-2特异性T细胞和B细胞在完全接种疫苗前后的反应,进行HMI测量。疫苗接种后2-4周左右,与对照组相比。监测所有参与者的AE。
    结果:该研究包括63名SOT接受者:44名肾脏接受者,16个肝脏接受者,和3个心脏移植接受者,以及11项免疫能力控制。在SOT接收者中,36%是女性,中位年龄(IQR)为52(42-61)。自移植以来的中位数(IQR)时间为55(28-123)个月。第二次给药后,与对照组相比,SOT接受者的中位数(IQR)抗RBD抗体水平显着降低(8.3[0.4-46.0]vs.272.2[178.1-551.6]BAU/mL,p<0.01)。这导致SOT接受者的血清转化率(抗RBD抗体>7.1BAU/mL)为51%,对照组为100%(p=0.008)。在移植后一年以上接受疫苗会显著影响血清转换(OR9.04,95%CI1.04-78.56,p=0.046),和低剂量霉酚酸轻微影响血清转换(OR2.67,95%CI0.89-7.96,p=0.079)。与对照组相比,RBD特异性B细胞反应也显着降低(0[0-4]vs.10[6-22]SFU/106PBMC,p=0.001)。同样,与对照组相比,S1-和SNMO特异性T细胞反应显着降低(48[16-128]vs.216[132-356]SFU/106PBMC,p=0.004和20[4-48]vs.92[72-320]SFU/106PBMC,p=0.004)。AE通常是轻度的并且自发解决。
    结论:接受全两剂量ChAdOx1nCoV-19疫苗的SOT受者与具有免疫功能的个体相比,HMI和CMI应答显著降低。应考虑在疫苗接种期间给予额外的疫苗剂量或优化免疫抑制方案(泰国临床试验注册:TCTR20210523002)。
    BACKGROUND: Immunization against SARS-CoV-2 is essential for vulnerable solid organ transplant (SOT) recipients who are at risk of infection. However, there are concerns about suboptimal immunogenicity, especially in humoral immunity (HMI), and limited exploration of cell-mediated immune (CMI) responses. The primary objective of this study was to assess the immunogenicity of ChAdOx1 nCoV-19 vaccination in SOT recipients. The secondary endpoint was to evaluate factors that affect immunogenicity and adverse events (AEs) following immunization in SOT recipients.
    METHODS: All adult SOT recipients who received the two-dose ChAdOx1 nCoV-19 vaccine at a 12-week interval underwent measurements of HMI by evaluating anti-receptor-binding domain (RBD) IgG levels and CMI by investigating SARS-CoV-2-specific T cell and B cell responses before and after complete vaccination, around 2-4 weeks post-vaccination, and compared to controls. AEs were monitored in all participants.
    RESULTS: The study included 63 SOT recipients: 44 kidney recipients, 16 liver recipients, and 3 heart transplant recipients, along with 11 immunocompetent controls. Among SOT recipients, 36% were female, and the median (IQR) age was 52 (42-61). The median (IQR) time since transplant was 55 (28-123) months. After the second dose, the median (IQR) anti-RBD antibody levels were significantly lower in SOT recipients compared to those in the control group (8.3 [0.4-46.0] vs. 272.2 [178.1-551.6] BAU/mL, p < 0.01). This resulted in a seroconversion rate (anti-RBD antibody > 7.1 BAU/mL) of 51% among SOT recipients and 100% among controls (p = 0.008). Receiving the vaccine beyond one year post-transplant significantly affected seroconversion (OR 9.04, 95% CI 1.04-78.56, p = 0.046), and low-dose mycophenolic acid marginally affected seroconversion (OR 2.67, 95% CI 0.89-7.96, p = 0.079). RBD-specific B cell responses were also significantly lower compared to those in the control group (0 [0-4] vs. 10 [6-22] SFUs/106 PBMCs, p = 0.001). Similarly, S1- and SNMO-specific T cell responses were significantly lower compared to those in the control group (48 [16-128] vs. 216 [132-356] SFUs/106 PBMCs, p = 0.004 and 20 [4-48] vs. 92 [72-320] SFUs/106 PBMCs, p = 0.004). AEs were generally mild and spontaneously resolved.
    CONCLUSIONS: SOT recipients who received the full two-dose ChAdOx1 nCoV-19 vaccine demonstrated significantly diminished HMI and CMI responses compared to immunocompetent individuals. Consideration should be given to administering additional vaccine doses or optimizing immunosuppressant regimens during vaccination (Thai Clinical Trial Registry: TCTR20210523002).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中东呼吸综合征冠状病毒(MERS-CoV)的出现由于其严重的呼吸系统疾病和高死亡率而引起了全球重大健康关注。目前,尽管有死灰复燃的可能,没有针对MERS-CoV的特定治疗方法,只有支持性护理可用。我们的研究旨在通过开发针对MERS-CoV的有效中和性双特异性抗体(bsAb)来解决这一治疗空白。最初,我们使用噬菌体展示技术和已建立的人抗体文库分离了4种特异性靶向MERS-CoV受体结合域(RBD)的人单克隆抗体(mAb).在这四个选定的单克隆抗体中,我们的强化体外功能分析表明,MERS-CoVRBD特异性mAbK111.3对MERS-CoV假病毒感染以及MERS-CoVRBD与人二肽基肽酶4之间的分子相互作用表现出最有效的中和活性.因此,我们设计了一个新的bsAb,K207.C,通过利用K111.3作为IgG碱基,并将其与其非竞争对的单链可变片段融合,K111.1.与其亲本mAb相比,该工程改造的bsAb显示出显著增强的针对MERS-CoV的中和潜力。这些发现表明K207。C可能是有效MERS-CoV中和的潜在候选者,进一步强调了bsAb双靶向方法在MERS-CoV中和中的前景。
    The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2的全球传播导致了全球范围内的重大经济和社会负担。即使大流行已经结束,对于能够逃避疫苗接种或先前感染诱导的免疫的高度传染性变体的出现,人们仍然感到担忧。病毒渗透的成功是由于参与病毒附着的受体结合基序(RBM)的特定氨基酸残基。该区域与细胞受体ACE2相互作用,触发中和抗体(nAb)应答。在这项研究中,我们评估了接受单剂量或不同疫苗组合的个体的血清免疫原性,这些个体针对原始SARS-CoV-2株和突变的线性RBM.尽管对野生型SARS-CoV-2RBM有适度的抗体反应,Omicron变体在RBM中表现出四个突变(S477N,T478K,E484A,和F486V),导致甚至更低的抗体滴度。观察到的主要免疫应答针对IgA和IgG。虽然nAbs通常以RBD为目标,我们的调查揭示了RBD关键次区域内血清反应性的降低,RBM。这种缺陷可能对保护性nAbs的产生有影响。使用微尺度热电泳对S1WT和S2WTRBM肽与nAb结合的评估显示,对S2WT序列(GSTPCNGVEGFNCYF)具有更高的亲和力(35nM),其中包括FNCY修补程序。我们的发现表明,SARS-CoV-2的线性RBM不是接种疫苗个体中的免疫显性区域。理解体液反应的复杂动力学,它与病毒进化的相互作用,宿主遗传学对于制定有效的疫苗接种策略至关重要,不仅针对SARS-CoV-2,而且还预测潜在的未来冠状病毒。
    The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD\'s crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2的刺突蛋白受体结合域(RBD)是人类细胞感染所必需的。它是引发中和抗体的主要靶标,也是诊断试剂盒的主要组分。对这种蛋白质的大量需求导致使用植物作为生产平台。然而,有必要确定RBD的N-聚糖结构以研究其作为疫苗候选物或诊断试剂的功效和功能。这里,我们分析了水稻愈伤组织中产生的RBD的N-聚糖谱。在两个潜在的N-聚糖受体位点中,我们发现一个没有被利用,另一个含有复合型N-聚糖的混合物。这不同于当RBD在其他宿主中表达时发现的N-聚糖的异质混合物,包括Nicotianabenthamiana.通过比较不同宿主的糖基化谱,我们可以选择产生具有最有益的N-聚糖结构的RBD的平台,用于不同的应用。
    The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号