quantum simulation

量子模拟
  • 文章类型: Journal Article
    最近的理论和算法发展提高了路径积分动力学方法可以在凝聚相振动光谱的模拟中包括核量子效应的准确性。现在,这种方法被理解为近似于光滑费曼路径的离域经典Matsubara动力学,在室温下控制液态水等系统的动力学。主要集中在液态水和六边形冰的模拟,我们解释了最近开发的准质心分子动力学(QCMD),fast-QCMD,和温度升高的路径积分粗粒度模拟(TePIGS)方法在通过对量子热波动求平均而获得的平均力的电势上产生经典动力学。这些新方法彼此非常接近,TePIGS方法最近与实验测量的液态水振动光谱产生了极好的一致性,冰,和液体-空气界面。我们还讨论了这种方法的局限性。
    Recent theoretical and algorithmic developments have improved the accuracy with which path integral dynamics methods can include nuclear quantum effects in simulations of condensed-phase vibrational spectra. Such methods are now understood to be approximations to the delocalized classical Matsubara dynamics of smooth Feynman paths, which dominate the dynamics of systems such as liquid water at room temperature. Focusing mainly on simulations of liquid water and hexagonal ice, we explain how the recently developed quasicentroid molecular dynamics (QCMD), fast-QCMD, and temperature-elevated path integral coarse-graining simulations (Te PIGS) methods generate classical dynamics on potentials of mean force obtained by averaging over quantum thermal fluctuations. These new methods give very close agreement with one another, and the Te PIGS method has recently yielded excellent agreement with experimentally measured vibrational spectra for liquid water, ice, and the liquid-air interface. We also discuss the limitations of such methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    悬浮光机械,由于其超高的机械Q>1010,被认为是宏观量子叠加的最佳测试平台之一。从这个角度来看,我们简要回顾了悬浮光力学的发展,关注宏观量子现象,以及在量子精密测量中的应用。以具有内置氮空位中心的悬浮纳米金刚石为例进行了讨论。最后,我们讨论了悬浮光机械的未来发展方向,比如天基实验,悬浮光力学阵列及其在量子模拟中的应用。
    The levitated optomechanics, because of its ultra-high mechanical Q > 1010, is considered to be one of the best testbeds for macroscopic quantum superpostions. In this perspective, we give a brief review on the development of the levitated optomechanics, focusing on the macroscopic quantum phenomena, and the applications in quantum precision measurement. The levitated nanodiamond with built-in nitrogen-vacancy centers is discussed as an example. Finally, we discuss the future dirctions of the levtated optomechanics, such as the space-based experiments, the arrays of levitated optomechanics and applications in quantum simulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文通过采用量子模拟方法的计算分析,研究了无真空栅极电介质掺杂的碳纳米管/纳米带场效应晶体管(VGD-DLCNT/GNRFET)的性能。该方法将泊松求解器的自洽解与弹道极限中的模式空间非平衡格林函数(NEGF)集成在一起。采用真空栅极电介质(VGD)范例可确保辐射硬化功能,同时避免辐射诱导的捕获电荷机制,而无掺杂范例通过避免在纳米级范围内实现尖锐的掺杂梯度来促进制造灵活性。纳米器件的静电掺杂是通过源极和漏极掺杂栅极实现的。模拟包括MOSFET和隧道FET(TFET)模式。数值调查全面考察了电位分布,传输特性,亚阈值摆动,漏电流,导通状态电流,流动比率,和扩展能力。结果表明,真空纳米器件具有高性能的鲁棒性,抗辐射开关应用。此外,成功提出了通过掺杂栅极电压调节来优化能带图并改善超尺度状态下的开关性能的外在增强的建议。这些发现强调了真空栅极电介质碳基纳米晶体管用于超声,高性能,节能,和辐射免疫纳米电子学。
    This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green\'s function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电子哈密顿量的量子模拟量子位模型依赖于特定的变换,以考虑电子的费米子置换特性。这些转换(主要是Jordan-Wigner转换(JWT)和Bravyi-Kitaev转换)在量子电路中对应于辅助电路级别的引入。为了在量子计算中以更直接的方式包括费米子性质,我们建议使用几何代数(GA)发出的方法,which,由于其换向特性,非常适合费米子系统。首先,我们将GA中的Witt基方法应用于该框架中的JWT,并使用该公式表示各种量子门。然后,我们重写一般的一电子和两电子哈密顿量,并将其用于构建氢分子的量子模拟电路。最后,量子伊辛哈密顿量,广泛用于量子模拟,在这个框架中重新表述。
    Quantum simulation qubit models of electronic Hamiltonians rely on specific transformations in order to take into account the fermionic permutation properties of electrons. These transformations (principally the Jordan-Wigner transformation (JWT) and the Bravyi-Kitaev transformation) correspond in a quantum circuit to the introduction of a supplementary circuit level. In order to include the fermionic properties in a more straightforward way in quantum computations, we propose to use methods issued from Geometric Algebra (GA), which, due to its commutation properties, are well adapted for fermionic systems. First, we apply the Witt basis method in GA to reformulate the JWT in this framework and use this formulation to express various quantum gates. We then rewrite the general one and two-electron Hamiltonian and use it for building a quantum simulation circuit for the Hydrogen molecule. Finally, the quantum Ising Hamiltonian, widely used in quantum simulation, is reformulated in this framework.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    远程相互作用与量子光学和凝聚态物理学中的各种量子系统有关。特别是,量子光学平台的控制有望深入了解由相互作用的远程性质引起的量子关键特性。从理论的角度来看,众所周知,长期的相互作用治疗起来很复杂。这里,我们概述了研究具有远程相互作用的量子磁体的最新进展,重点是基于蒙特卡洛积分的两种技术。首先,摄动连续unit变换的方法,其中在白色图的嵌入方案中应用了经典的MonteCarlo积分。这种链接簇扩展允许在热力学极限中提取能量和可观测值的高阶级数扩展。第二,随机级数展开量子蒙特卡罗积分可以在大型有限系统上进行计算。然后可以使用有限尺寸缩放来确定无限系统的物理属性。近年来,这两种技术都已成功应用于涉及远程伊辛的一维和二维量子磁体,XY,和海森堡在各种二分和非二分格上的相互作用。这里,我们以连贯的方式总结了所获得的量子临界特性,包括所有这些系统的临界指数。Further,我们回顾了如何使用长程相互作用来研究上临界尺寸以上的量子相变,以及从数值计算中提取这些量子临界性质的缩放技术。
    Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum-optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here, we give an overview of recent advancements to investigate quantum magnets with long-range interactions focusing on two techniques based on Monte Carlo integration. First, the method of perturbative continuous unitary transformations where classical Monte Carlo integration is applied within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-order series expansions of energies and observables in the thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-size scaling can then be used to determine the physical properties of the infinite system. In recent years, both techniques have been applied successfully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite lattices. Here, we summarise the obtained quantum-critical properties including critical exponents for all these systems in a coherent way. Further, we review how long-range interactions are used to study quantum phase transitions above the upper critical dimension and the scaling techniques to extract these quantum critical properties from the numerical calculations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与经典计算相比,量子计算有望实现指数加速。虽然中性原子处理器在可扩展性方面是开创性的平台,偶极Rydberg门对这些设备的扩展施加了主要瓶颈。本文提出了一种用于中性原子量子处理的替代方案,基于自旋相关晶格几何中基态原子对Rydberg电子的费米散射。而不是依赖里德伯格对电位,通过设计唯一的里德堡原子的电子云来控制相互作用。本方案通过以指数方式抑制短寿命状态的种群并在超密集原子晶格中运行,解决了Rydberg处理器中的缩放障碍。Rydberg-Fermi型分子势中的恢复力在很长的相互作用期内保持了陷阱。此外,所提出的方案减轻了不同的竞争不忠标准,消除了不必要的交叉对话,并显著抑制了运行复杂量子算法的操作深度。
    Quantum computing promises exponential speed-up compared to its classical counterpart. While the neutral atom processors are the pioneering platform in terms of scalability, the dipolar Rydberg gates impose the main bottlenecks on the scaling of these devices. This article presents an alternative scheme for neutral atom quantum processing, based on the Fermi scattering of a Rydberg electron from ground-state atoms in spin-dependent lattice geometries. Instead of relying on Rydberg pair-potentials, the interaction is controlled by engineering the electron cloud of a sole Rydberg atom. The present scheme addresses the scaling obstacles in Rydberg processors by exponentially suppressing the population of short-lived states and by operating in ultra-dense atomic lattices. The restoring forces in molecule type Rydberg-Fermi potential preserve the trapping over a long interaction period. Furthermore, the proposed scheme mitigates different competing infidelity criteria, eliminates unwanted cross-talks, and significantly suppresses the operation depth in running complicated quantum algorithms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发射子量子比特是基于电路的量子信息处理中的主要元素,比如现有的量子计算机,由于它们的可控性和易于工程实施。但不仅仅是量子比特,transmons是多级非线性振荡器,可用于研究基本物理问题。这里,它们被用作激发态量子相变(ESQPT)的模拟器,这是量子相变到激发态的推广。我们表明,在驱动的SNAIL-transmon的有效哈密顿量中实验观察到的光谱接吻(能级对的合并)是ESQPT前体。我们探讨了ESQPT的动态后果,其中包括非时间顺序相关器的指数增长,随后是周期性的复兴,以及由于本地化而导致的生存概率的缓慢演变。ESQPT的这些特征对于当前的超导电路平台是可以实现的,并且对冷原子和离子阱的实验感兴趣。
    Transmon qubits are the predominant element in circuit-based quantum information processing, such as existing quantum computers, due to their controllability and ease of engineering implementation. But more than qubits, transmons are multilevel nonlinear oscillators that can be used to investigate fundamental physics questions. Here, they are explored as simulators of excited state quantum phase transitions (ESQPTs), which are generalizations of quantum phase transitions to excited states. We show that the spectral kissing (coalescence of pairs of energy levels) experimentally observed in the effective Hamiltonian of a driven SNAIL-transmon is an ESQPT precursor. We explore the dynamical consequences of the ESQPT, which include the exponential growth of out-of-time-ordered correlators, followed by periodic revivals, and the slow evolution of the survival probability due to localization. These signatures of ESQPT are within reach for current superconducting circuits platforms and are of interest to experiments with cold atoms and ion traps.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人造1D和2D晶格已成为模拟晶格哈密顿量的强大平台,对集体多体效应的基础研究,和非平凡拓扑产生的现象。激子-极化子,玻色子部分光和部分物质准粒子,将明显的非线性与片上实现的可能性相结合。在这种情况下,嵌入微腔中的有机半导体已被证明是研究非线性多体物理学和玻色子凝聚的通用候选者,与大多数无机系统相反,它们允许在环境条件下使用,因为它们拥有超稳定的Frenkel激子。一个控制良好的,高质量的光学晶格实现,容纳光物质准粒子。实现的极化石墨烯具有优异的腔品质因子,显示狄拉克锥和平带色散以及室温下激射的明显特征。这是通过用荧光蛋白mCherry填充耦合的电介质微腔来实现的。证明了在环境条件下出现相干极化子冷凝物,利用耦合条件与最先进的基于无机半导体的系统一样精确和可控,例如,在外延生长中没有晶格匹配的限制。这一进展允许直接扩展到更复杂的系统,例如研究二维晶格中的拓扑现象,包括拓扑激光器和非埃尔米特光学。
    Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons. A well-controlled, high-quality optical lattice is implemented that accommodates light-matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state-of-the-art inorganic semiconductor-based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non-Hermitian optics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自旋轨道耦合超冷气体的实现推动了广泛的研究,通常基于旋转波近似(RWA)。通过忽略反向旋转项,RWA表征了两级系统中的单个近共振自旋轨道(SO)耦合。这里,我们提出并通过实验实现了一种新方案,用于为RWA以外的超冷费米子实现一对二维(2D)SO耦合。这项工作不仅实现了RWA之外的第一个异常Floquet拓扑费米气体,但也显著提高了2D-SO耦合费米气体的寿命。基于泵浦探针淬火测量,我们观察到两组SO耦合之间的确定性相位关系,这是我们超越RWA方案的特征,使两个SO耦合能够同时调谐到最佳2D配置。我们通过测量双环带反转表面来观察有趣的带拓扑,在高Chern数的状态下,与Floquet拓扑费米气体定量一致。我们的研究可以为探索基于长寿命SO耦合超冷费米子的奇异SO物理学和异常拓扑状态开辟一条途径。
    The realization of spin-orbit-coupled ultracold gases has driven a wide range of research and is typically based on the rotating wave approximation (RWA). By neglecting the counter-rotating terms, RWA characterizes a single near-resonant spin-orbit (SO) coupling in a two-level system. Here, we propose and experimentally realize a new scheme for achieving a pair of two-dimensional (2D) SO couplings for ultracold fermions beyond RWA. This work not only realizes the first anomalous Floquet topological Fermi gas beyond RWA, but also significantly improves the lifetime of the 2D-SO-coupled Fermi gas. Based on pump-probe quench measurements, we observe a deterministic phase relation between two sets of SO couplings, which is characteristic of our beyond-RWA scheme and enables the two SO couplings to be simultaneously tuned to the optimum 2D configurations. We observe intriguing band topology by measuring two-ring band-inversion surfaces, quantitatively consistent with a Floquet topological Fermi gas in the regime of high Chern numbers. Our study can open an avenue to explore exotic SO physics and anomalous topological states based on long-lived SO-coupled ultracold fermions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子纳米磁体(MNM),含有相互作用自旋的分子,一直是量子力学的游乐场。它们的特点是许多可访问的低能级,可以用来存储和处理量子信息。这自然打开了使用它们作为量子点的可能性,从而扩大了量子逻辑相对于基于量子位的架构的工具。这些额外的自由度最近促使人们提出了在单分子中编码具有嵌入式量子纠错(QEC)的量子比特的建议。QEC是量子计算的圣杯,这种量子方法可以规避标准多量子比特代码典型的物理量子比特的巨大开销。分子方法的另一个重要优势是在制备复杂的超分子结构中实现了极高的控制程度,其中单个的样品连接在一起,保持其各自的特性和相干性。这与构建量子模拟器特别相关,能够模仿其他量子物体动力学的可控系统。将MNM用于量子信息处理是一个快速发展的领域,仍然需要进行全面的实验探索。要解决的关键问题与扩大量子比特/量子比特的数量及其单独寻址有关。正在深入探索几种有希望的可能性,从使用单分子晶体管或超导器件到光学读出技术。此外,化学的新工具也可以在手边,如手性诱导的自旋选择性。在本文中,我们将回顾这一跨学科研究领域的现状,讨论开放的挑战和设想的解决方案路径,这些路径最终可以释放量子技术的分子自旋的巨大潜力。
    Molecular nanomagnets (MNMs), molecules containing interacting spins, have been a playground for quantum mechanics. They are characterized by many accessible low-energy levels that can be exploited to store and process quantum information. This naturally opens the possibility of using them as qudits, thus enlarging the tools of quantum logic with respect to qubit-based architectures. These additional degrees of freedom recently prompted the proposal for encoding qubits with embedded quantum error correction (QEC) in single molecules. QEC is the holy grail of quantum computing and this qudit approach could circumvent the large overhead of physical qubits typical of standard multi-qubit codes. Another important strength of the molecular approach is the extremely high degree of control achieved in preparing complex supramolecular structures where individual qudits are linked preserving their individual properties and coherence. This is particularly relevant for building quantum simulators, controllable systems able to mimic the dynamics of other quantum objects. The use of MNMs for quantum information processing is a rapidly evolving field which still requires to be fully experimentally explored. The key issues to be settled are related to scaling up the number of qudits/qubits and their individual addressing. Several promising possibilities are being intensively explored, ranging from the use of single-molecule transistors or superconducting devices to optical readout techniques. Moreover, new tools from chemistry could be also at hand, like the chiral-induced spin selectivity. In this paper, we will review the present status of this interdisciplinary research field, discuss the open challenges and envisioned solution paths which could finally unleash the very large potential of molecular spins for quantum technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号