pulsed laser deposition

脉冲激光沉积
  • 文章类型: Journal Article
    压电和铁电纤锌矿有望重塑现代微电子,因为它们可以轻松地与主流半导体技术集成。Sc掺杂AlN(Al1-xScxN)因其增强的压电性能和新兴的铁电性能而备受关注,然而,常用的溅射导致多晶Al1-xScxN薄膜具有高漏电流。这里,报道了在蓝宝石和4H-SiC衬底上脉冲激光沉积单晶外延Al1-xScxN薄膜。纯纤锌矿相保持在x=0.3,氧污染≤0.1at%。通过原子级显微镜成像,偏振估计为140µCcm-2,并通过扫描探针可切换。当x=0.3时,发现压电系数是未掺杂系数的五倍,因此非常适合高频射频(RF)滤波器和3D非易失性存储器。
    Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al1- xScxN) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al1- xScxN films with high leakage current. Here, the pulsed laser deposition of single crystalline epitaxial Al1- xScxN thin films on sapphire and 4H-SiC substrates is reported. Pure wurtzite phase is maintained up to x = 0.3 with ≤0.1 at% oxygen contamination. Polarization is estimated to be 140 µC cm-2 via atomic scale microscopy imaging and found to be switchable via a scanning probe. The piezoelectric coefficient is found to be five times of the undoped one when x = 0.3, making it desirable for high-frequency radiofrequency (RF) filters and 3D nonvolatile memories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结构,表面,Y2O3:Ho3+的上转换(UC)发光特性,通过脉冲激光沉积生长的Yb3薄膜,对于不同数量的激光脉冲,被研究过。结晶度,表面,并且发现薄膜的UC发光特性高度依赖于激光脉冲数。X射线粉末衍射分析表明Y2O3:Ho3+,以具有Ia3'空间群的立方结构相形成Yb3膜。薄膜的厚度是通过使用横截面扫描电子显微镜来估计的,使用X射线光电子能谱(XPS)的深度分布,和Swanepoel方法。高分辨率XPS用于确定所制备薄膜的化学组成和氧化态。在538、550、666和756nm处观察到UC发射,分配给Ho3离子的5F4→5I8、5S2→5I8、5F5→5I8和5S2→5I7跃迁。功率依赖性测量证实双光子过程参与UC过程。从国际委员会deI\'Eclairage坐标估计的颜色纯度证实了强烈的绿色UC发射。结果表明,Y2O3:Ho3+,Yb3+UC透明膜是各种应用的良好候选者,包括太阳能电池应用。
    The structural, surface, and upconversion (UC) luminescence properties of Y2O3:Ho3+,Yb3+ films grown by pulsed laser deposition, for different numbers of laser pulses, were studied. The crystallinity, surface, and UC luminescence properties of the thin films were found to be highly dependent on the number of laser pulses. The X-ray powder diffraction analysis revealed that Y2O3:Ho3+,Yb3+ films were formed in a cubic structure phase with an Ia 3 ¯ space group. The thicknesses of the films were estimated by using cross-sectional scanning electron microscopy, depth profiles using X-ray photoelectron spectroscopy (XPS), and the Swanepoel method. The high-resolution XPS was used to determine the chemical composition and oxidation states of the prepared films. The UC emissions were observed at 538, 550, 666, and 756 nm, assigned to the 5F4 → 5I8, 5S2 → 5I8, 5F5 → 5I8, and 5S2 → 5I7 transitions of the Ho3+ ions. The power dependence measurements confirmed the involvement of a two-photon process in the UC process. The color purity estimated from the Commission International de I\'Eclairage coordinates confirmed strong green UC emission. The results suggested that the Y2O3:Ho3+,Yb3+ UC transparent films are good candidates for various applications, including solar cell applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    控制金属玻璃(MGs)中的局部异质性代表了提高其可塑性的新兴领域。防止造成宏观脆性破坏的灾难性剪切带(SB)的传播。迄今为止,一种旨在精细调节局部异质性控制SB成核和传播的纳米工程方法仍然缺失,阻碍了开发具有大且可调强度/延展性平衡和受控变形行为的MGs的潜力。在这项工作中,我们利用脉冲激光沉积(PLD)的潜力来合成一类新型的晶体/玻璃超细纳米层压板(U-NLs),其中4nm厚的晶体Al分离6和9nm厚的Zr50Cu50玻璃纳米层,同时报告了高密度的尖锐界面和大的化学混合。此外,我们通过合成致密和纳米颗粒的U-NL来调整形态,剥削,分别,逐个原子或簇组装的生长方式。对于紧凑型U-NL,我们报告了高质量密度(~8.35g/cm3)和增强和可调的机械性能,达到高达9.3和3.6GPa的硬度和屈服强度的最大值,分别。此外,由于富含Al的子层的SB阻塞,我们在压缩中显示出高达3.6%的均匀弹塑性变形。另一方面,纳米颗粒U-NLs表现出较低的屈服强度(3.4GPa)与增强的弹塑性变形(〜6%)相结合,然后形成表面SB,即使在变形超过15%时也不渗透,由于簇组装结构内较大的自由体积含量和晶体/玻璃纳米界面的存在,能够适应SB事件。总的来说,我们展示了PLD如何使晶体/玻璃U-NL的合成与局部异质性的最终控制下降到原子尺度,提供能够深度控制变形行为的新纳米工程策略,超越传统的强度和延展性之间的权衡。我们的方法可以扩展到金属材料的其他组合,对工业应用有明显的兴趣,例如结构涂层和微电子(MEMS和NEMS)。
    The control of local heterogeneities in metallic glasses (MGs) represents an emerging field to improve their plasticity, preventing the propagation of catastrophic shear bands (SBs) responsible for the macroscopically brittle failure. To date, a nanoengineered approach aimed at finely tuning local heterogeneities controlling SB nucleation and propagation is still missing, hindering the potential to develop MGs with large and tunable strength/ductility balance and controlled deformation behavior. In this work, we exploited the potential of pulsed laser deposition (PLD) to synthesize a novel class of crystal/glass ultrafine nanolaminates (U-NLs) in which a ∼4 nm thick crystalline Al separates 6 and 9 nm thick Zr50Cu50 glass nanolayers, while reporting a high density of sharp interfaces and large chemical intermixing. In addition, we tune the morphology by synthesizing compact and nanogranular U-NLs, exploiting, respectively, atom-by-atom or cluster-assembled growth regimes. For compact U-NLs, we report high mass density (∼8.35 g/cm3) and enhanced and tunable mechanical behavior, reaching maximum values of hardness and yield strength of up to 9.3 and 3.6 GPa, respectively. In addition, we show up to 3.6% homogeneous elastoplastic deformation in compression as a result of SB blocking by the Al-rich sublayers. On the other hand, nanogranular U-NLs exhibit slightly lower yield strength (3.4 GPa) in combination with enhanced elastoplastic deformation (∼6%) followed by the formation of superficial SBs, which are not percolative even at deformations exceeding 15%, as a result of the larger free volume content within the cluster-assembled structure and the presence of crystal/glass nanointerfaces, enabling to accommodate SB events. Overall, we show how PLD enables the synthesis of crystal/glass U-NLs with ultimate control of local heterogeneities down to the atomic scale, providing new nanoengineered strategies capable of deep control of the deformation behavior, surpassing traditional trade-off between strength and ductility. Our approach can be extended to other combinations of metallic materials with clear interest for industrial applications such as structural coatings and microelectronics (MEMS and NEMS).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    FeSe是最神秘的超导体之一。在铁基化合物家族中,它具有最简单的化学组成和结构,然而,它显示薄膜的超导转变温度(Tc)跨越0到15K,而单晶通常为8K。一个家族中Tc的这种大变化突显了与理解铁硫族化合物中的超导性相关的关键挑战。这里,使用双光束脉冲激光沉积(PLD)方法,我们制造了独特的FeSe晶格常数梯度薄膜,首次揭示了原子结构与超导转变温度之间的明确关系。在等离子体羽流内部产生激光通量梯度的双束PLD导致了单膜内边缘位错分布的连续变化,这里已经观察到晶格常数和Tc之间的精确相关性,即,Tcºc-c0,其中c是c轴晶格常数(c0是常数)。这种明确的关系与理论研究相结合,表明Fe的dxy轨道的移动在FeSe的线虫性与超导性之间的相互作用中起着主导作用。
    在线版本包含10.1007/s44214-024-00058-0提供的补充材料。
    FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( T c ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of T c within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and T c has been observed here, namely, T c ∝ c - c 0 , where c is the c-axis lattice constant (and c 0 is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the d xy orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s44214-024-00058-0.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景技术有机-无机混合发光器件由于其潜力在过去几年中已经获得了显著的关注。这些器件将无机半导体的优异电子迁移率与有机半导体的显著光电特性结合在一起。调查的重点是分析将p型GaN与有机材料(PEDOT,PSS,和PMMA)。该异质结是有机-无机杂化物。该过程需要利用旋涂技术将聚(甲基丙烯酸甲酯)(PMMA)或PMMA和聚(3,4亚乙基二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT:PSS)的混合物层施加到氧化铟锡(ITO)基底上。随后,不同的Nd:YAG激光脉冲(200、250和300脉冲)用于使用脉冲激光沉积方法将GaN无机层施用到制备的有机层上。随后,热蒸发技术用于在有机和无机层的顶部沉积铝电极,而激光脉冲进行微调以获得最佳性能。霍尔效应研究验证了GaN材料的p型导电性。电致发光研究证实了在一系列电压情况下,GaN基器件会产生蓝光,从45到72V.
    Organic-inorganic hybrid light-emitting devices have garnered significant attention in the last few years due to their potential. These devices integrate the superior electron mobility of inorganic semiconductors with the remarkable optoelectronic characteristics of organic semiconductors. The inquiry focused on analyzing the optical and electrical properties of a light-emitting heterojunction that combines p-type GaN with organic materials (PEDOT, PSS, and PMMA). This heterojunction is an organic-inorganic hybrid. The procedure entailed utilizing a spin-coating technique to apply a layer of either poly(methyl methacrylate) (PMMA) or a mixture of PMMA and poly(3,4ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) onto an indium tin oxide (ITO) substrate. Subsequently, different Nd:YAG laser pulses (200, 250, and 300 pulses) were used to administer a GaN inorganic layer onto the prepared organic layer using a pulsed laser deposition approach. Subsequently, the thermal evaporation technique was employed to deposit an aluminum electrode on the top of the organic and inorganic layers, while laser pulses were fine-tuned for optimal performance. The Hall effect investigation verifies the p-type conductivity of the GaN material. The electroluminescence studies confirmed the production of blue light by the GaN-based devices throughout a range of voltage situations, spanning from 45 to 72 V.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们采用分析透射电子显微镜(TEM)来关联高熵氧化物(HEO)Mg0.2Co0.2Ni0.2Cu0.2Zn0.22O(J14)的堆叠外延薄膜内的结构和化学环境变化,使用脉冲激光沉积(PLD)在不同的基材温度(500和200°C)下生长两层。电子衍射和原子分辨STEM成像揭示了堆叠薄膜中平面外晶格参数的差异,其使用四维STEM(4D-STEM)在更大规模上进一步量化。在较低温度下沉积的层中,电子能量损失谱(EELS)映射表明Co离子的氧化态和键合环境发生了急剧变化,和能量色散X射线光谱(EDX)映射检测更显著的阳离子缺乏。从头算密度泛函理论(DFT)计算验证了J14阳离子亚晶格上的空位会导致明显的电子和结构变化。实验和计算分析表明,薄膜生长过程中的低温会导致阳离子缺乏,改变的化学环境,和减少晶格参数,同时保持单相。我们的结果表明,构型熵的复杂相关性,动力学,和热力学可用于在不改变阳离子比例的情况下访问HEO材料中的一系列亚稳态构型,使HEO材料的功能特性的进一步工程。
    We employ analytical transmission electron microscopy (TEM) to correlate the structural and chemical environment variations within a stacked epitaxial thin film of the high entropy oxide (HEO) Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (J14), with two layers grown at different substrate temperatures (500 and 200 °C) using pulsed laser deposition (PLD). Electron diffraction and atomically resolved STEM imaging reveal the difference in out-of-plane lattice parameters in the stacked thin film, which is further quantified on a larger scale using four-dimensional STEM (4D-STEM). In the layer deposited at a lower temperature, electron energy loss spectroscopy (EELS) mapping indicates drastic changes in the oxidation states and bonding environment for Co ions, and energy-dispersive X-ray spectroscopy (EDX) mapping detects more significant cation deficiency. Ab initio density functional theory (DFT) calculations validate that vacancies on the cation sublattice of J14 result in significant electronic and structural changes. The experimental and computational analyses indicate that low temperatures during film growth result in cation deficiency, an altered chemical environment, and reduced lattice parameters while maintaining a single phase. Our results demonstrate that the complex correlation of configurational entropy, kinetics, and thermodynamics can be utilized for accessing a range of metastable configurations in HEO materials without altering cation proportions, enabling further engineering of functional properties of HEO materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结合合成的自治系统,表征,人工智能可以大大加速材料的发现和优化,然而,通过物理气相沉积技术生长宏观薄膜的平台远远落后于其他平台。在这里,这项研究证明了通过脉冲激光沉积(PLD)的自主合成,一种高度通用的合成技术,超薄WSe2薄膜的生长。通过将PLD合成和原位诊断反馈的自动化与高通量方法相结合,这项研究展示了一个工作流程和平台,该工作流程和平台使用高斯过程回归和贝叶斯优化,通过有效采样所选4D参数空间的0.25%,根据拉曼光谱标准自主识别WSe2薄膜的生长方式。吞吐量比传统PLD工作流快至少10倍,该平台和工作流程可以加速发现和自主优化可由PLD合成的大量材料。
    Autonomous systems that combine synthesis, characterization, and artificial intelligence can greatly accelerate the discovery and optimization of materials, however platforms for growth of macroscale thin films by physical vapor deposition techniques have lagged far behind others. Here this study demonstrates autonomous synthesis by pulsed laser deposition (PLD), a highly versatile synthesis technique, in the growth of ultrathin WSe2 films. By combing the automation of PLD synthesis and in situ diagnostic feedback with a high-throughput methodology, this study demonstrates a workflow and platform which uses Gaussian process regression and Bayesian optimization to autonomously identify growth regimes for WSe2 films based on Raman spectral criteria by efficiently sampling 0.25% of the chosen 4D parameter space. With throughputs at least 10x faster than traditional PLD workflows, this platform and workflow enables the accelerated discovery and autonomous optimization of the vast number of materials that can be synthesized by PLD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过脉冲激光沉积在氧化钇稳定的氧化锆(YSZ)衬底上生长的单层以及属于两个异质结构M1(BaFe12O19/YbFeO3/YSZ)和M2(YbFeO3/BaFe12O19/YSZ)的界面的结构和化学组成通过使用高分辨率X射线衍射,透射电子显微镜(TEM),和具有能量色散X射线光谱的原子分辨率扫描TEM。与温度相关的磁特性显示出两种具有不同矫顽力的不同异质结构,各向异性场,和第一各向异性常数,这与各个层中的缺陷浓度以及界面处的混合程度有关。具有BaFe12O19/YbFeO3堆叠顺序的异质结构,即M1,表现出独特的界面,没有任何化学混合,而在原子分辨率EDX图和质量密度分布中均在M2中观察到富含Fe的结晶相。此外,M1显示高c轴取向,由于大量的相边界,这会导致更高的各向异性常数K1以及更大的矫顽力。尽管存在倾斜的反铁磁/铁磁组合(T<140K),异质结构M1和M2在T=50K时都没有发现任何可检测的交换偏差。此外,发现BaM层上的压缩残余应变抑制了铁磁性,从而降低M1情况下的居里温度(Tc)。这些发现表明M1(BaFe12O19/YbFeO3/YSZ)适用于磁存储应用。
    The structure and the chemical composition of individual layers as well as of interfaces belonging to the two heterostructures M1 (BaFe12O19/YbFeO3/YSZ) and M2 (YbFeO3/BaFe12O19/YSZ) grown by pulsed laser deposition on yttria-stabilized zirconia (YSZ) substrates are deeply characterized by using a combination of methods such as high-resolution X-ray diffraction, transmission electron microscopy (TEM), and atomic-resolution scanning TEM with energy-dispersive X-ray spectroscopy. The temperature-dependent magnetic properties demonstrate two distinct heterostructures with different coercivity, anisotropy fields, and first anisotropy constants, which are related to the defect concentrations within the individual layers and to the degree of intermixing at the interface. The heterostructure with the stacking order BaFe12O19/YbFeO3, i.e., M1, exhibits a distinctive interface without any chemical intermixture, while an Fe-rich crystalline phase is observed in M2 both in atomic-resolution EDX maps and in mass density profiles. Additionally, M1 shows high c-axis orientation, which induces a higher anisotropy constant K1 as well as a larger coercivity due to a high number of phase boundaries. Despite the existence of a canted antiferromagnetic/ferromagnetic combination (T < 140 K), both heterostructures M1 and M2 do not reveal any detectable exchange bias at T = 50 K. Additionally, compressive residual strain on the BaM layer is found to be suppressing the ferromagnetism, thus reducing the Curie temperature (Tc) in the case of M1. These findings suggest that M1 (BaFe12O19/YbFeO3/YSZ) is suitable for magnetic storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电阻开关器件的创新构成了超低功耗计算器件发展的核心目标。无成形电阻开关是一种电阻开关,其消除了对形成导电丝的初始高电压的需要,并且提供了克服传统电阻开关装置的限制的有前景的机会。这里,我们演示了NiFe2O4(NFO)薄膜中混合电荷态氧空位工程的无电铸电阻开关,制造为非对称Ti/NFO/Pt异质结构,第一次。在受控的氧气气氛中使用脉冲激光沉积,我们将氧空位与镍铁氧体相中的阳离子价态一起调整,后者直接影响氧空位的电荷状态。通过X射线衍射和硬X射线光电子能谱证实了薄膜的结构完整性和化学组成,分别。电传输研究表明,在薄膜沉积过程中,通过调整氧空位浓度的数量和电荷状态,可以显着改变薄膜中的电阻开关特性。可以看出,电阻切换机制取决于由于镍价态变化而形成的单电荷和双电荷氧空位的迁移,以及随之在切换层中形成/破裂的导电细丝。这得到了有效的低压电阻开关的最佳氧空位浓度的存在的支持。低于或高于其切换过程被禁止。随着丝状开关机构,由于界面效应,Ti顶部电极也增强了电阻切换性能。器件上的时间分辨测量显示了优化的空位设计的NFO电阻开关中的长期和短期增强,在单个系统中实现固态突触的理想选择。我们在相关氧化物形成无电阻开关方面的工作对于CMOS兼容的低功耗,非易失性电阻记忆和神经形态电路。
    Innovations in resistive switching devices constitute a core objective for the development of ultralow-power computing devices. Forming-free resistive switching is a type of resistive switching that eliminates the need for an initial high voltage for the formation of conductive filaments and offers promising opportunities to overcome the limitations of traditional resistive switching devices. Here, we demonstrate mixed charge state oxygen vacancy-engineered electroforming-free resistive switching in NiFe2O4 (NFO) thin films, fabricated as asymmetric Ti/NFO/Pt heterostructures, for the first time. Using pulsed laser deposition in a controlled oxygen atmosphere, we tune the oxygen vacancies together with the cationic valence state in the nickel ferrite phase, with the latter directly affecting the charge state of the oxygen vacancies. The structural integrity and chemical composition of the films are confirmed by X-ray diffraction and hard X-ray photoelectron spectroscopy, respectively. Electrical transport studies reveal that resistive switching characteristics in the films can be significantly altered by tuning the amount and charge state of the oxygen vacancy concentration during the deposition of the films. The resistive switching mechanism is seen to depend upon the migration of both singly and doubly charged oxygen vacancies formed as a result of changes in the nickel valence state and the consequent formation/rupture of conducting filaments in the switching layer. This is supported by the existence of an optimum oxygen vacancy concentration for efficient low-voltage resistive switching, below or above which the switching process is inhibited. Along with the filamentary switching mechanism, the Ti top electrode also enhances the resistive switching performance due to interfacial effects. Time-resolved measurements on the devices display both long- and short-term potentiation in the optimized vacancy-engineered NFO resistive switches, ideal for solid-state synapses achieved in a single system. Our work on correlated oxide forming-free resistive switches holds significant potential for CMOS-compatible low-power, nonvolatile resistive memory and neuromorphic circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在本研究中,从理论和实验上研究了由Pb(Zr0.4Ti0.6)O3和Pb(Zr0.6Ti0.4)O3制成的人工超晶格薄膜的极化状态和压电性能。发达的理论预测了具有均匀压缩应变的(111)外延单畴超晶格膜中沿[001]和[111]方向的非平凡极化。通过脉冲激光沉积获得这样的膜。当层厚度减小到3nm时,d33在100kV/cm时变为128±3.8pm/V,在600kV/cm时变为71.3±2.83pm/V,与(111)取向的Pb(Zr0.4Ti0.6)O3或Pb(Zr0.6Ti0.4)O3的体积相当,明显超过了典型的夹紧膜。测量与理论分析一致,这表明增强的压电性是由于非平凡极化的旋转。此外,理论研究预测,对于具有均匀拉伸应变的超晶格薄膜中的特定参数,d33会超过300pm/V,这对于微机电系统的应用是有希望的。
    Artificial superlattice films made of Pb(Zr0.4Ti0.6)O3 and Pb(Zr0.6Ti0.4)O3 were investigated for their polarization states and piezoelectric properties theoretically and experimentally in this study. The developed theory predicts nontrivial polarization along neither [001] nor [111] directions in (111)-epitaxial monodomain superlattice films with uniform compressive strain. Such films were achieved via pulsed laser deposition. When the layer thickness is reduced to 3 nm, d33 becomes 128 ± 3.8 pm/V at 100 kV/cm and 71.3 ± 2.83 pm/V at 600 kV/cm, comparable to that of (111)-oriented Pb(Zr0.4Ti0.6)O3 or Pb(Zr0.6Ti0.4)O3 bulks and clearly exceeding that of the typical clamped films. The measurement agrees with the theoretical analysis, which reveals that the enhanced piezoelectricity is due to rotation of the nontrivial polarization. Furthermore, the theoretical study predicts an even larger d33 exceeding 300 pm/V for specific parameters in superlattice films with uniform tensile strain, which is promising for applications of microelectromechanical systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号