pulmonary artery endothelial cells (PAECs)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Pulmonary arterial hypertension (PAH) is a form of obstructive vascular disease. Chronic hypoxic exposure leads to excessive proliferation of pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. This condition can potentially be aggravated by [Ca2+ ] i mobilization. In the present study, hypoxia exposure of rat\'s model was established. Two-pore segment channels (TPCs) silencing was achieved in rats\' models by injecting Lsh-TPC1 or Lsh-TPC2. The effects of TPC1/2 silencing on PAH were evaluated by H&E staining detecting pulmonary artery wall thickness and ELISA assay kit detecting NAADP concentrations in lung tissues. TPC1/2 silencing was achieved in PASMCs and PAECs, and cell proliferation was detected by MTT and BrdU incorporation assays. As the results shown, NAADP-activated [Ca2+ ]i shows to be mediated via two-pore segment channels (TPCs) in PASMCs, with TPC1 being the dominant subtype. NAADP generation and TPC1/2 mRNA and protein levels were elevated in the hypoxia-induced rat PAH model; NAADP was positively correlated with TPC1 and TPC2 expression, respectively. In vivo, Lsh-TPC1 or Lsh-TPC2 infection significantly improved the mean pulmonary artery pressure and PAH morphology. In vitro, TPC1 silencing inhibited NAADP-AM-induced PASMC proliferation and [Ca2+ ]i in PASMCs, whereas TPC2 silencing had minor effects during this process; TPC2 silencing attenuated NAADP-AM- induced [Ca2+ ]i and ECM in endothelial cells, whereas TPC1 silencing barely ensued any physiological changes. In conclusion, TPC1/2 might provide a unifying mechanism within pulmonary arterial hypertension, which can potentially be regarded as a therapeutic target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Endothelial-to-mesenchymal transition (EndMT) has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). Gremlin-1 promotes vascular remodeling of PAH and mediates epithelial-mesenchymal transition, which is similar to EndMT. In the present study we investigated the potential role of gremlin-1 plays in EndMT of pulmonary artery endothelial cells (PAECs).
    Immunofluorescence staining was performed to detect the expression of alpha smooth muscle actin (α-SMA) and von Willebrand factor (VWF). Migration and angiogenic responses of PAECs were determined by transwell assay and tube formation assay, respectively. Protein expression levels were determined by western blotting.
    Gremlin-1 induced EndMT of PAECs in a phospho-smad2/3-dependent manner. This was characterized by the loss of platelet endothelial cell adhesion molecule 1 and an increase in protein levels of a-SMA, nerve-cadherin, and matrix metalloproteinase 2. It was also determined that gremlin-1 facilitated the migration and angiogenic responses of PAECs in a dose-dependent manner. Bone morphogenetic protein 7 (BMP-7) was found to attenuate gremlin-1-mediated EndMT, migration and angiogenesis of PAECs by inducing phosphorylation of Smad1/5/8 and suppressing phosphorylation of Smad2/3.
    Gremlin-1 mediates EndMT in PAECs, and BMP-7 reverses gremlin-1-induced EndMT by an induction of p-Smad1/5/8 and suppression of p-Smad2/3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号