protospacer adjacent motif (PAM)

原型间隔区相邻基序 (PAM)
  • 文章类型: Journal Article
    分子诊断在疾病检测中起着重要作用。预防,和治疗,在即时测试中至关重要。在这次调查中,使用抗体控制的Cas12a生物传感器(ACCBOR)开发了一种新型的基于CRISPR/Cas12a的小分子检测平台,其中抗体将控制CRISPR/Cas12a的反式切割活性。在这个系统中,小分子标记在无靶序列(NTS)的PAM位点周围,抗体会结合在标记分子上,以防止CRISPR/Cas12a的组合,导致反式切割活性降低。生物素-,地高辛-,25-羟基维生素D3(25-OH-VD3)标记的NTS和相应的结合蛋白分别用于验证其性能,表现出极大的普遍性。最后,开发了25-OH-VD3的一锅法检测,表现出高灵敏度和优异的特异性。在30min内,血清中的检出限为259.86pg/mL。该检测平台还具有成本低的优点,操作简单(一锅法),和快速检测(~30分钟),将为其他小分子靶标的高灵敏度检测提供新的可能性。
    Molecular diagnostics play an important role in illness detection, prevention, and treatment, and are vital in point-of-care test. In this investigation, a novel CRISPR/Cas12a based small-molecule detection platform was developed using Antibody-Controlled Cas12a Biosensor (ACCBOR), in which antibody would control the trans-cleavage activity of CRISPR/Cas12a. In this system, small-molecule was labeled around the PAM sites of no target sequence(NTS), and antibody would bind on the labeled molecule to prevent the combination of CRISPR/Cas12a, resulting the decrease of trans-cleavage activity. Biotin-, digoxin-, 25-hydroxyvitamin D3 (25-OH-VD3)-labeled NTS and corresponding binding protein were separately used to verify its preformance, showing great universality. Finally, one-pot detection of 25-OH-VD3 was developed, exhibiting high sensitivity and excellent specificity. The limit of detection could be 259.86 pg/mL in serum within 30 min. This assay platform also has the advantages of low cost, easy operation (one-pot method), and fast detection (∼30 min), would be a new possibilities for the highly sensitive detection of other small-molecule targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    产乙酸细菌可以通过将CO2转化为工业相关化学品和燃料的能力在实现净零方面发挥重要作用。充分利用这种潜力将依赖于有效的代谢工程工具,例如基于化脓性链球菌CRISPR/Cas9系统的那些。然而,试图将含cas9的载体引入伍迪氏乙酰杆菌中的尝试没有成功,这很可能是由于Cas9核酸酶毒性和cas9基因中内源性A.woodii限制性修饰(R-M)系统的识别位点的存在。作为替代,本研究旨在促进CRISPR/Cas内源性系统作为基因组工程工具的开发。因此,开发了一个Python脚本来自动预测原型间隔区相邻基序(PAM)序列,并用于鉴定A.woodiiI-B型CRISPR/Cas系统的PAM候选物。通过干扰测定和RT-qPCR在体内表征鉴定的PAMs和天然前导序列。分别。合成CRISPR阵列的表达,由原生前导序列组成,直接重复,和足够的垫片,以及用于同源重组的编辑模板,成功地导致了pyrE和pheA的300bp和354bp的框内缺失,分别。为了进一步验证该方法,还产生了3.2kb的hsdR1缺失,以及pheA基因座处的荧光激活和吸收转移标签(FAST)报告基因的敲入。同源臂长度,细胞密度,并且发现用于转化的DNA量显著影响编辑效率。设计的工作流程随后应用于自产乙醇梭菌的I-B型CRISPR/Cas系统,能够以100%的编辑效率生成561bp的pyrE框内缺失。这是使用它们的内源性CRISPR/Cas系统对伍迪氏菌和自产乙醇梭菌进行基因组工程的第一份报告。
    Acetogenic bacteria can play a major role in achieving Net Zero through their ability to convert CO2 into industrially relevant chemicals and fuels. Full exploitation of this potential will be reliant on effective metabolic engineering tools, such as those based on the Streptococcus pyogenes CRISPR/Cas9 system. However, attempts to introduce cas9-containing vectors into Acetobacterium woodii were unsuccessful, most likely as a consequence of Cas9 nuclease toxicity and the presence of a recognition site for an endogenous A. woodii restriction-modification (R-M) system in the cas9 gene. As an alternative, this study aims to facilitate the exploitation of CRISPR/Cas endogenous systems as genome engineering tools. Accordingly, a Python script was developed to automate the prediction of protospacer adjacent motif (PAM) sequences and used to identify PAM candidates of the A. woodii Type I-B CRISPR/Cas system. The identified PAMs and the native leader sequence were characterized in vivo by interference assay and RT-qPCR, respectively. Expression of synthetic CRISPR arrays, consisting of the native leader sequence, direct repeats, and adequate spacer, along with an editing template for homologous recombination, successfully led to the creation of 300 bp and 354 bp in-frame deletions of pyrE and pheA, respectively. To further validate the method, a 3.2 kb deletion of hsdR1 was also generated, as well as the knock-in of the fluorescence-activating and absorption-shifting tag (FAST) reporter gene at the pheA locus. Homology arm length, cell density, and the amount of DNA used for transformation were found to significantly impact editing efficiencies. The devised workflow was subsequently applied to the Type I-B CRISPR/Cas system of Clostridium autoethanogenum, enabling the generation of a 561 bp in-frame deletion of pyrE with 100% editing efficiency. This is the first report of genome engineering of both A. woodii and C. autoethanogenum using their endogenous CRISPR/Cas systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    恶性细胞中的体细胞突变在遗传上将恶性细胞与正常细胞区分开。我们试图确定癌症中体细胞突变的类型,这将产生最大数量的新CRISPR-Cas9靶位点。三种胰腺癌的全基因组测序(WGS)显示,单碱基取代,主要在非编码区域,与结构变体(中位数=37)和外显子中的单碱基取代(中位数=4)相比,产生的新型NGG前间隔区相邻基序(PAM;中位数=494)数量最多。使用我们优化的PAM发现管道,我们通过对不同肿瘤类型的WGS分析,在来自ICGC的587个个体肿瘤中检测到大量体细胞PAMs(中位数=1127/肿瘤).最后,我们展示了这些PAMs,在患者匹配的正常细胞中不存在,可以用于癌症特异性靶向,使用CRISPR-Cas9在人癌细胞系的混合培养物中具有>75%的选择性细胞杀伤。
    我们开发了一种高效的体细胞PAM发现方法,发现单个肿瘤中存在大量的体细胞PAM。这些PAMs可以作为选择性杀死癌细胞的新靶标。
    Somatic mutations are desirable targets for selective elimination of cancer, yet most are found within the noncoding regions. We propose a novel, cancer-specific killing approach using CRISPR-Cas9 which exploits the requirement of a protospacer adjacent motif (PAM) for Cas9 activity. Through whole genome sequencing (WGS) of paired tumor minus normal (T-N) samples from three pancreatic cancer patients (Panc480, Panc504, and Panc1002), we identified an average of 417 somatic PAMs per tumor produced from single base substitutions. We analyzed 591 paired T-N samples from The International Cancer Genome Consortium and discovered medians of ~455 somatic PAMs per tumor in pancreatic, ~2800 in lung, and ~3200 in esophageal cancer cohorts. Finally, we demonstrated >80% selective cell death of two targeted pancreatic cancer cell lines in co-cultures using 4-9 sgRNAs, targeting noncoding regions, designed from the somatic PAM discovery approach. We also showed no off-target activity from these tumor-specific sgRNAs through WGS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于在感兴趣的DNA区域中缺乏相容的原型间隔相邻基序(PAM)序列,成簇的规则间隔短回文重复(CRISPR)和CRISPR相关蛋白(Cas)的应用可能受到限制。最近,斯普瑞,化脓性链球菌Cas9(SpCas9)的变体,据报道,这几乎完全满足了PAM的要求。同时,SpRY的PAM尚未得到很好的解决。在我们之前的研究中,我们通过可观察序列切除(PAM-DOSE)和绿色荧光蛋白(GFP)-报告系统开发了PAM定义,以研究人类细胞中的PAM。在这里,我们努力用这两种方法鉴定SpRY的PAMs。结果表明,5'-NRN-3',5\'-NTA-3\',和5\'-NCK-3\'可以被视为规范PAM。5\'-NCA-3\'和5\'-NTK-3\'可以用作非优先级PAM。同时,5\'-NYC-3\'的PAM不推荐用于人类细胞。这些发现为SpRY在人类基因组编辑中的应用提供了进一步的见解。
    The application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) can be limited due to a lack of compatible protospacer adjacent motif (PAM) sequences in the DNA regions of interest. Recently, SpRY, a variant of Streptococcus pyogenes Cas9 (SpCas9), was reported, which nearly completely fulfils the PAM requirement. Meanwhile, PAMs for SpRY have not been well addressed. In our previous study, we developed the PAM Definition by Observable Sequence Excision (PAM-DOSE) and green fluorescent protein (GFP)‍-reporter systems to study PAMs in human cells. Herein, we endeavored to identify the PAMs of SpRY with these two methods. The results indicated that 5\'-NRN-3\', 5\'-NTA-3\', and 5\'-NCK-3\' could be considered as canonical PAMs. 5\'-NCA-3\' and 5\'-NTK-3\' may serve as non-priority PAMs. At the same time, PAM of 5\'-NYC-3\' is not recommended for human cells. These findings provide further insights into the application of SpRY for human genome editing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR-Cas系统为细菌提供对病毒的适应性免疫。在隔片自适应期间,Cas1-Cas2复合物选择外源DNA的片段,叫做预起搏器,并将它们以提供功能性免疫的方向整合到CRISPR阵列中。在几种I型CRISPR-Cas系统中,Cas4参与预缩放体的修剪和前间隔区相邻基序(PAM)的裂解,但是在缺乏Cas4的系统中如何处理预起搏器,例如I-E和I-F型系统,不理解。在大肠杆菌中,它有一个I-E型系统,Cas1-Cas2通过对PAM的特定识别,优先选择具有3''悬垂的预封装器,但是在不存在Cas4的情况下,这些预起搏器是如何以功能取向整合的,目前尚不清楚。使用纯化蛋白质的生化方法,以及整合,预起搏器保护,测序,测序和定量PCR检测,我们在这里表明,细菌3'-5'核酸外切酶DnaQ和ExoT可以修剪长长的3'突出部分,并促进正确方向的整合。我们发现通过这些外切核酸酶的修剪会导致不对称的中间体,因为Cas1-Cas2保护PAM序列,这有助于定义间隔物方向。我们的发现暗示大肠杆菌宿主3'-5'核酸外切酶DnaQ和ExoT参与间隔区适应,并揭示了在大肠杆菌中定义间隔区方向的机制。
    CRISPR-Cas systems provide bacteria with adaptive immunity against viruses. During spacer adaptation, the Cas1-Cas2 complex selects fragments of foreign DNA, called prespacers, and integrates them into CRISPR arrays in an orientation that provides functional immunity. Cas4 is involved in both the trimming of prespacers and the cleavage of protospacer adjacent motif (PAM) in several type I CRISPR-Cas systems, but how the prespacers are processed in systems lacking Cas4, such as the type I-E and I-F systems, is not understood. In Escherichia coli, which has a type I-E system, Cas1-Cas2 preferentially selects prespacers with 3\' overhangs via specific recognition of a PAM, but how these prespacers are integrated in a functional orientation in the absence of Cas4 is not known. Using a biochemical approach with purified proteins, as well as integration, prespacer protection, sequencing, and quantitative PCR assays, we show here that the bacterial 3\'-5\' exonucleases DnaQ and ExoT can trim long 3\' overhangs of prespacers and promote integration in the correct orientation. We found that trimming by these exonucleases results in an asymmetric intermediate, because Cas1-Cas2 protects the PAM sequence, which helps to define spacer orientation. Our findings implicate the E. coli host 3\'-5\' exonucleases DnaQ and ExoT in spacer adaptation and reveal a mechanism by which spacer orientation is defined in E. coli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas系统为大多数古细菌和许多细菌提供RNA指导的适应性免疫。它们能够在一系列重复序列中以新型间隔区的形式捕获入侵遗传元件的片段。然后这些元件可以用作记忆,通过RNA引导的核酸酶的作用来破坏传入的DNA。本章描述了确定CRISPR-Cas系统捕获新序列并使用它们来阻断噬菌体和水平基因转移的能力的一般程序。所有方案均使用II-A型CRISPR-Cas系统在金黄色葡萄球菌中进行。尽管如此,所提供的方案可以适用于其他细菌和其他类型的CRISPR-Cas系统。
    CRISPR-Cas systems provide RNA-guided adaptive immunity to the majority of archaea and many bacteria. They are able to capture pieces of invading genetic elements in the form of novel spacers in an array of repeats. These elements can then be used as a memory to destroy incoming DNA through the action of RNA-guided nucleases. This chapter describes general procedures to determine the ability of CRISPR-Cas systems to capture novel sequences and to use them to block phages and horizontal gene transfer. All protocols are performed in Staphylococcus aureus using Type II-A CRISPR-Cas systems. Nonetheless, the protocols provided can be adapted to work with other bacteria and other types of CRISPR-Cas systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号