proton-motive force

质子动力
  • 文章类型: Journal Article
    小型多药耐药(SMR)转运蛋白是防御多药耐药病原体对毒素和其他稳态干扰化合物的关键角色。然而,最近的证据表明EmrE,来自大肠杆菌的SMR和理解运输的模型,还可以通过药物门控质子泄漏诱导对某些化合物的敏感性。这降低了质子动力(PMF)的pH分量,降低受影响细菌的活力。质子泄漏可以提供与大多数已知抗生素的靶标不同的未探索的药物靶标。激活质子泄漏只需要SMR存在,而不是主要的抵抗机制,并耗散许多其他外排泵的能源。PAsmr,来自铜绿假单胞菌的EmrE同源物,在细胞和纯化系统中运输许多EmrE底物。我们假设PAsmr,像EmrE一样,可能通过药物门控质子泄漏赋予对某些化合物的敏感性。表达PAsmr的大肠杆菌的生长测定显示底物依赖性抗性和易感性表型,体外固体支撑膜电生理实验表明,PAsmr同时执行反端口和底物门控质子单端,证明在EmrE中观察到相同的功能滥交。铜绿假单胞菌PA14菌株的生长测定表明,PAsmr对某些抗微生物化合物具有抗性,但是在敏感性底物上没有观察到生长缺陷,表明铜绿假单胞菌可以补偿通过PAsmr发生的质子泄漏。铜绿假单胞菌和大肠杆菌之间的这些表型差异促进了我们对铜绿假单胞菌的潜在抗性机制的理解,并促使进一步研究SMR在病原体抗生素抗性中的作用。
    目的:小型多药耐药(SMR)转运蛋白是在许多病原体中发现的一类外排泵,尽管它们对抗生素耐药性的贡献尚未完全了解。我们假设这些转运蛋白不仅可以赋予抗性,还可以赋予易感性,通过耗散质子动力。这意味着使用SMR转运蛋白作为目标;它只需要存在(而不是主要的抵抗机制)。这里,我们用在铜绿假单胞菌中发现的SMR转运蛋白检验了这一假设,发现它可以同时进行反端口(赋予抗性)和底物门控质子泄漏。质子泄漏不利于大肠杆菌的生长,而不是铜绿假单胞菌,这表明铜绿假单胞菌对pH耗散的反应不同,或可以完全防止pH耗散。
    Small multidrug resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the proton-motive force (PMF), reducing the viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from Pseudomonas aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of the underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens.
    OBJECTIVE: Small multidrug resistance (SMR) transporters are a class of efflux pumps found in many pathogens, although their contributions to antibiotic resistance are not fully understood. We hypothesize that these transporters may confer not only resistance but also susceptibility, by dissipating the proton-motive force. This means to use an SMR transporter as a target; it merely needs to be present (as opposed to being the primary resistance mechanism). Here, we test this hypothesis with an SMR transporter found in Pseudomonas aeruginosa and find that it can perform both antiport (conferring resistance) and substrate-gated proton leak. Proton leak is detrimental to growth in Escherichia coli but not P. aeruginosa, suggesting that P. aeruginosa responds differently to or can altogether prevent ∆pH dissipation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    两阶段(例如明暗)磷酸化实验表明,存在存储的“高能”中间体连接电子传输和磷酸化。大,人造电化学质子梯度(质子原动力或pmfs)也可以驱动磷酸化,这一事实被视为强烈支持化学渗透耦合假说,即pmf是“高能”中间体。然而,在这样的实验中有一个实验阈值(pmf>170mV,相当于ΔpH~2.8),实际上在低于ΔpH时没有观察到磷酸化,和220mV需要重新创建体内速率。这导致了正确的问题,这就是电子传输产生的pmf值是否足够大。即使是任何磷酸化所需的较低的磷酸化(不包括解释体内速率所需的那些)也低于阈值[1,2],无论是直接用微电极测量还是通过使用膜渗透离子和/或酸/碱(它们始终是转运底物[3],因此,所有这些测量实际上都是人为的)。似乎足够大(220mV)的单个病例现在被认为是扩散电位假象[4]。许多其他可观测物(O2脉冲型实验中的大量H+不足,嗜碱性细菌,双重抑制剂滴定,解偶联剂结合蛋白,等。)与pmf值的观点一致,尤其是ΔΦ,实际上很低。基于质子的电荷分离模型[2],类似于如何将能量存储在称为驻极体的设备中的质子版本,提供了一个高能中间体,可以解释整个文献,包括非常惊人的证明[5],电子传递和ATP合酶复合物之间需要紧密接近才能使它们之间发生磷酸化。因此,本文的主要目的是总结广泛而自洽的文献,其中大部分是古代的,很少被现代研究人员考虑,尽管它清楚地表明化学渗透耦合不足以解释这些现象。
    Two-stage (e.g. light-dark) phosphorylation experiments showed that there is a stored \'high-energy\' intermediate linking electron transport and phosphorylation. Large, artificial electrochemical proton gradients (protonmotive forces or pmfs) can also drive phosphorylation, a fact seen as strongly supportive of the chemiosmotic coupling hypothesis that a pmf is the \'high-energy\' intermediate. However, in such experiments there is an experimental threshold (pmf >170 mV, equivalent to ΔpH ∼2.8) below which no phosphorylation is in fact observed, and 220 mV are required to recreate in vivo rates. This leads to the correct question, which is then whether those values of the pmf generated by electron transport are large enough. Even the lower ones as required for any phosphorylation (leave alone those required to explain in vivo rates) are below the threshold [1, 2], whether measured directly with microelectrodes or via the use of membrane-permeant ions and/or acids/bases (which are always transporter substrates [3], so all such measurements are in fact artefactual). The single case that seemed large enough (220 mV) is now admitted to be a diffusion potential artefact [4]. Many other observables (inadequate bulk H+ in \'O2-pulse\'-type experiments, alkaliphilic bacteria, dual-inhibitor titrations, uncoupler-binding proteins, etc.) are consistent with the view that values of the pmf, and especially of Δψ, are actually very low. A protet-based charge separation model [2], a protonic version analogous to how energy may be stored in devices called electrets, provides a high-energy intermediate that can explain the entire literature, including the very striking demonstration [5] that close proximity is required between electron transport and ATP synthase complexes for energy coupling between them to allow phosphorylation to occur. A chief purpose of this article is thus to summarise the extensive and self-consistent literature, much of which is of some antiquity and rarely considered by modern researchers, despite its clear message of the inadequacy of chemiosmotic coupling to explain these phenomena.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    质子(H+)动力(PMF)作为鞭毛马达旋转的能量来源,对微生物运动至关重要。这里,使用光控制PMF,我们引入了光驱动的向内和向外质子泵视紫红质,RmXeR和AR3,进入大肠杆菌。表达RmXeR和AR3的大肠杆菌细胞的运动性在光照时显著降低和增加,分别。系留细胞实验表明,在照明时,鞭毛马达的扭矩用RmXeR降低到接近零(28pNnm),而AR3增加到1170pNnm。PMF的这些变化对应于+146mV(RmXeR)和-140mV(AR3),分别。因此,通过使用质子泵视紫红质成功地实现了对大肠杆菌中PMF的双向光学控制。该系统具有增强我们对PMF在各种生物学功能中的作用的理解的潜力。
    Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and -140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在以前的出版物中,我们已经描述了pISep双同时,非缓冲溶质(NaCl,尿素或乙腈)来自外部产生的pH梯度。在DSIG中,[salute]梯度的形状和斜率不取决于pH梯度的形状和斜率。该技术允许在包括阴离子在内的各种固定相上对复杂蛋白质混合物进行一次真实的同时二维LC分离,阳离子交换剂(AEX,CEX),反相(RP),混合模式和混合床。使用人源化IgG1(HIgG1)单克隆抗体(MAb)和各种pH&[NaCl]DSIG,我们表明大多数MAb亚型可以成功地彼此分离。这些实验观察结果得到了本文提出的初步理论论证的支持,该论证预测了通过pH和[NaCl]的DSIG进行的所有MAb同工型分离的总体改善。理论计算预测,总的来说,在pH梯度分离中存在一个最佳的非零等度盐浓度,它将解析接近结合能的同工型,但是对于所有同工型的可接受的分辨率,需要宽范围的盐浓度。理论还预测了较弱而不是更强的结合同种型的更好分离。实验上,我们发现,没有一组DSIGsLC条件能够在合理持续时间的单次运行中最佳地基线解析所有可识别的MAb亚型.pH&[NaCl]pISepDSIGLC的多功能性和简单性允许快速,在不改变缓冲系统的化学性质的情况下,在2.4至10.8的任何pH范围和[NaCl]从0至1M的任何范围内自动搜寻蛋白质分离。由于pISep缓冲系统在IEXLC中的普遍适用性,研究人员获得了一个强大的工具,可以轻松开发pH和[NaCl]DSIG协议,该协议可以改变流动相组成以实现目标蛋白质的高分辨率分离。
    In previous publications we have described the pISep dual simultaneous, independent gradients (DSIGs) liquid chromatography (LC) for uncoupling gradients of non-buffering solute (NaCl, urea or acetonitrile) from externally generated pH gradients. In DSIGs the shape and slope of the [salute] gradient does not depend on the shape and slope of the pH gradient. The technique allows in a single run true simultaneous two dimensional LC separation of complex protein mixtures on various stationary phases including anion, cation exchangers (AEX, CEX), reversed phase (RP), mixed mode and mixed bed. Using a humanized IgG1 (HIgG1) monoclonal antibody (MAb) and a variety of pH & [NaCl] DSIGs, we show that most of MAb isoforms can be successfully separated from each other. These experimental observations are supported by an initial theoretical argument presented here predicting an overall improvement of all MAb isoforms separation by DSIGs of pH & [NaCl]. Theoretical calculations predict that, in general, there exists an optimal non-zero isocratic salt concentration in a pH gradient separation that will resolve isoforms close in binding energy, but a wide range of salt concentrations will be required for acceptable resolution of all isoforms. Theory also predicts better separation of weaker rather than stronger binding isoforms. Experimentally, we have found that no one set of DSIGs LC conditions could optimally baseline resolve all identifiable MAb isoforms in a single run of reasonable duration. The versatility and simplicity of the pH & [NaCl] pISep DSIGs LC allows fast, automated scouting of protein separations over any range of pH from 2.4 to 10.8 and [NaCl] from 0 to 1 M without changing the chemistry of the buffering system. Due to the universal applicability of the pISep buffering system in IEX LC, the researcher is given a powerful tool to easily develop pH & [NaCl] DSIGs protocols that vary mobile phase compositions to achieve high resolution separations of targeted proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    代谢环境是抗生素耐药性的原因,这突出了抗生素耐药机制的作用方式。这里,基于GC-MS的代谢组学和基于iTRAQ的蛋白质组学用于表征四环素抗性大肠杆菌K12的代谢状态(E.coli-RTET)与四环素敏感的大肠杆菌K12相比。由于四环素抗性,抑制了质子动力(PMF)和ATP升高的丙酮酸循环构成了最具特征的特征。为了了解PMF升高在四环素耐药中的作用,使用PMF抑制剂羰基氰化物3-氯苯腙(CCCP)和pH梯度来研究升高如何影响细菌活力和细胞内抗生素浓度。在CCCP和四环素之间检测到对生存力的强协同作用,这与细胞内药物的增加和外部pH的降低是一致的。此外,高和低PMF浓度的大肠杆菌-RTET和大肠杆菌-RGEN对庆大霉素和四环素敏感,分别。大肠杆菌-RTET中PMF的升高归因于其他代谢途径的激活,除了丙酮酸循环,包括苹果酸-草酰乙酸-磷酸烯醇丙酮酸-丙酮酸-苹果酸循环。这些结果不仅揭示了四环素耐药性的PMF依赖性机制,而且还为氨基糖苷类对四环素耐药的病原体和四环素类对氨基糖苷类耐药的细菌提供了解决方案。
    The metabolic environment is responsible for antibiotic resistance, which highlights the way in which the antibiotic resistance mechanism works. Here, GC-MS-based metabolomics with iTRAQ-based proteomics was used to characterize a metabolic state in tetracycline-resistant Escherichia coli K12 (E. coli-RTET) compared with tetracycline-sensitive E. coli K12. The repressed pyruvate cycle against the elevation of the proton motive force (PMF) and ATP constructed the most characteristic feature as a consequence of tetracycline resistance. To understand the role of the elevated PMF in tetracycline resistance, PMF inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and the pH gradient were used to investigate how the elevation influences bacterial viability and intracellular antibiotic concentration. A strong synergy was detected between CCCP and tetracycline to the viability, which was consistent with increasing intracellular drug and decreasing external pH. Furthermore, E. coli-RTET and E. coli-RGEN with high and low PMF concentrations were susceptible to gentamicin and tetracycline, respectively. The elevated PMF in E. coli-RTET was attributed to the activation of other metabolic pathways, except for the pyruvate cycle, including a malate-oxaloacetate-phosphoenolpyruvate-pyruvate-malate cycle. These results not only revealed a PMF-dependent mechanism for tetracycline resistance but also provided a solution to tetracycline-resistant pathogens by aminoglycosides and aminoglycoside-resistant bacteria by tetracyclines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    跨生物膜的电化学梯度对于细胞生物能量学至关重要。在细菌中,质子动力(PMF)驱动着诸如三磷酸腺苷的产生和运动等基本过程。传统上认为时间和空间稳定,最近的研究揭示了在单细胞和社区层面的动态PMF行为。此外,观察到的呼吸复合物的侧向分离可能表明PMF的空间异质性。使用光激活质子泵并检测细菌鞭毛马达的活性,我们扰动并探测单细胞的PMF。空间均匀的PMF扰动揭示了毫秒级的时间动态和不对称的电容响应。局部扰动显示出快速的横向PMF均匀化,比质子扩散更快,类似于在被动神经元中观察到的电渗电位,用电缆理论解释。这些观察结果暗示了PMF源和消费者之间沿膜的整体耦合,排除了持续的PMF空间异质性,但允许快速的时间变化。
    Electrochemical gradients across biological membranes are vital for cellular bioenergetics. In bacteria, the proton motive force (PMF) drives essential processes like adenosine triphosphate production and motility. Traditionally viewed as temporally and spatially stable, recent research reveals a dynamic PMF behavior at both single-cell and community levels. Moreover, the observed lateral segregation of respiratory complexes could suggest a spatial heterogeneity of the PMF. Using a light-activated proton pump and detecting the activity of the bacterial flagellar motor, we perturb and probe the PMF of single cells. Spatially homogeneous PMF perturbations reveal millisecond-scale temporal dynamics and an asymmetrical capacitive response. Localized perturbations show a rapid lateral PMF homogenization, faster than proton diffusion, akin to the electrotonic potential spread observed in passive neurons, explained by cable theory. These observations imply a global coupling between PMF sources and consumers along the membrane, precluding sustained PMF spatial heterogeneity but allowing for rapid temporal changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微流控分析工具在微型化靶向蛋白质组学测定以提高检测灵敏度方面发挥着重要作用。吞吐量,和自动化。微流体等电聚焦(IEF)可以从低到单细胞数量解析裂解物中的蛋白质形式。然而,IEF测定通常使用载体两性电解质(CA)来建立用于蛋白质分离的pH梯度,以阴极漂移(聚焦蛋白向阴极迁移)的形式存在pH不稳定性等限制。固定的pH梯度(IPG)凝胶通过将pH缓冲组分共价固定至基质来减少阴极漂移。据我们所知,在微尺度上实施IPG凝胶的努力仅限于玻璃微器件。为了使使用IPG的IEF适应广泛使用的微流体设备材料,我们介绍了一种基于聚二甲基硅氧烷(PDMS)的微流体装置,并比较了与IPG建立的IEF的微尺度pH梯度稳定性,CA,以及IPG凝胶和CA的混合制剂(混合床IEF)。基于PDMS的IPG微流体装置(μIPG)在20分钟的聚焦持续时间内在3.5mm分离泳道内分辨出相差0.1等电点的分析物。在20分钟的持续时间内,我们观察到三种配方之间明显不同的阴极漂移速度:在CA-IEF中60.1μm/min,在IPG-IEF中2.5μm/min(与CA-IEF相比降低~24倍),和1.4μm/min的混合床IEF(与CA-IEF相比降低了43倍)。最后,PDMS设备中的混合床IEF可分辨来自表达GFP的人乳腺癌细胞裂解物的绿色荧光蛋白(GFP)蛋白形式,从而建立了从复杂的生物标本裂解物的稳定性。μIPG是一种用于研究小体积蛋白质形式的有前途且稳定的技术。
    Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (μIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 μm/min in CA-IEF, 2.5 μm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 μm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. μIPG is a promising and stable technique for studying proteoforms from small volumes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在开发一种可编辑的结构支架,用于通过使用衍生自(杂)芳基-喹啉混合支架的合成化合物来改善药物开发,包括抗生素的药代动力学和药效学。
    结果:在这项研究中,通过测定最小抑制浓度,检查18个CF3-取代的(杂)芳基-喹啉杂合分子对金黄色葡萄球菌的潜在抗菌活性。这18种合成化合物代表了喹啉N-氧化物支架关键区域的修饰,使我们能够进行结构-活性关系(SAR)分析抗菌效力。在这些化合物中,3m表现出对两种耐甲氧西林金黄色葡萄球菌(MRSA)菌株的效力,以及其他革兰氏阳性菌,包括粪肠球菌和枯草芽孢杆菌。通过监测PMF并进行分子动力学模拟,我们证明了3m破坏了细菌质子动力(PMF)。此外,我们证明了这种作用机制,破坏PMF,对金黄色葡萄球菌来说是具有挑战性的。我们还在具有减弱的脂多糖(LPS)的鲍曼不动杆菌菌株中验证了3m的这种PMF抑制机制。此外,在革兰氏阴性细菌中,我们证明3m与粘菌素具有协同作用,破坏革兰氏阴性细菌的外膜。
    结论:我们开发可编辑的合成新型抗菌药物的方法强调了CF3取代的(杂)芳基喹啉支架用于设计靶向细菌质子动力的化合物的实用性,为了进一步的药物开发,包括药代动力学和药效学。
    OBJECTIVE: This study aimed to develop an editable structural scaffold for improving drug development, including pharmacokinetics and pharmacodynamics of antibiotics by using synthetic compounds derived from a (hetero)aryl-quinoline hybrid scaffold.
    RESULTS: In this study, 18 CF3-substituted (hetero)aryl-quinoline hybrid molecules were examined for their potential antibacterial activity against Staphylococcus aureus by determining minimal inhibitory concentrations. These 18 synthetic compounds represent modifications to key regions of the quinoline N-oxide scaffold, enabling us to conduct a structure-activity relationship analysis for antibacterial potency. Among the compounds, 3 m exhibited potency against with both methicillin resistant S. aureus strains, as well as other Gram-positive bacteria, including Enterococcus faecalis and Bacillus subtilis. We demonstrated that 3 m disrupted the bacterial proton motive force (PMF) through monitoring the PMF and conducting the molecular dynamics simulations. Furthermore, we show that this mechanism of action, disrupting PMF, is challenging for S. aureus to overcome. We also validated this PMF inhibition mechanism of 3 m in an Acinetobacter baumannii strain with weaken lipopolysaccharides. Additionally, in Gram-negative bacteria, we demonstrated that 3 m exhibited a synergistic effect with colistin that disrupts the outer membrane of Gram-negative bacteria.
    CONCLUSIONS: Our approach to developing editable synthetic novel antibacterials underscores the utility of CF3-substituted (hetero)aryl-quinoline scaffold for designing compounds targeting the bacterial proton motive force, and for further drug development, including pharmacokinetics and pharmacodynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核仁是由共存的亚相定义的多组分缩合物。我们确定了不同的内在无序区域(IDR),包括酸性(D/E)区域和穿插有富含E的区域的K块,定义核仁蛋白的特征。我们表明,核仁蛋白的定位偏好取决于它们的IDR及其包含的RNA或DNA结合域的类型。体外重建和细胞研究表明,结合了核仁成分的结合和复合凝聚,有助于核仁组织。核仁蛋白的D/E束有助于降低体外与核仁RNA形成的共缩合物的pH。在细胞中,这在核仁和核质之间建立了一个pH梯度。相比之下,近核核仁体,具有不同的大分子组成,具有非常不同的电荷分布的蛋白质IDR,具有等于或高于核质的pH值。我们的发现表明,不同的组成特异性会产生不同的缩合物的物理化学性质。
    Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:肠道微生物群(GM)与导致短链脂肪酸(SCFA)产生的膳食成分代谢之间的相互作用受到一系列因素的影响,包括结肠pH和碳水化合物来源。然而,关于胃肠道中的GM活性和代谢物产生如何受pH和pH梯度沿结肠增加的影响的知识仍然有限。
    结果:在这里,我们研究了与结肠中通常发现的水平相对应的pH梯度对使用底物菊粉的GM组成和代谢物产生的影响,乳糖,低聚半乳糖(GOS),和低聚果糖(FOS)在体外结肠设置中。我们研究了3种不同的pH条件(低,5.2增加到6.4;中等,5.6增加到6.8和高,6.0增加到7.2)对于每个粪便接种物,并且发现结肠pH梯度显着影响体外模拟的GM结构,但粪便供体和底物的影响更为明显。低pH条件强烈影响GM,拟杆菌属的相对丰度降低。和增加双歧杆菌。较高的体外模拟结肠pH以供体和底物依赖性方式促进SCFA的产生。丁酸生产者在较高的pH条件下富集,菊粉的丁酸盐产量也增加了。相低温杆菌属的相对丰度,拟杆菌,和Rikenellaceae也在较高的结肠pH下增加,伴随着以GOS和FOS为底物的丙酸盐产量增加。
    结论:一起,我们的结果表明,结肠底物,如膳食纤维影响转基因成分和代谢产物的生产,不仅被特定的微生物选择性地利用,但也因为他们的SCFA生产,这反过来也会影响结肠pH和整体GM组成和活性。我们的工作提供了有关从近端到远端结肠的pH上升梯度对体外发酵饮食底物的影响的详细信息,并强调了在转基因研究中考虑pH的重要性。
    BACKGROUND: The interplay between gut microbiota (GM) and the metabolization of dietary components leading to the production of short-chain fatty acids (SCFAs) is affected by a range of factors including colonic pH and carbohydrate source. However, there is still only limited knowledge on how the GM activity and metabolite production in the gastrointestinal tract could be influenced by pH and the pH gradient increases along the colon.
    RESULTS: Here we investigate the effect of pH gradients corresponding to levels typically found in the colon on GM composition and metabolite production using substrates inulin, lactose, galactooligosaccharides (GOS), and fructooligosaccharide (FOS) in an in vitro colon setup. We investigated 3 different pH regimes (low, 5.2 increasing to 6.4; medium, 5.6 increasing to 6.8 and high, 6.0 increasing to 7.2) for each fecal inoculum and found that colonic pH gradients significantly influenced in vitro simulated GM structure, but the influence of fecal donor and substrate was more pronounced. Low pH regimes strongly influenced GM with the decreased relative abundance of Bacteroides spp. and increased Bifidobacterium spp. Higher in vitro simulated colonic pH promoted the production of SCFAs in a donor- and substrate-dependent manner. The butyrate producer Butyricimonas was enriched at higher pH conditions, where also butyrate production was increased for inulin. The relative abundance of Phascolarctobacterium, Bacteroides, and Rikenellaceae also increased at higher colonic pH, which was accompanied by increased production of propionate with GOS and FOS as substrates.
    CONCLUSIONS: Together, our results show that colonic substrates such as dietary fibres influence GM composition and metabolite production, not only by being selectively utilized by specific microbes, but also because of their SCFA production, which in turn also influences colonic pH and overall GM composition and activity. Our work provides details about the effect of the gradients of rising pH from the proximal to distal colon on fermenting dietary substrates in vitro and highlights the importance of considering pH in GM research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号