proton pumps

质子泵
  • 文章类型: Journal Article
    光是具有光系统的生物体的重要因素,就像细菌视紫红质——一种充当离子泵的视网膜蛋白,通道,和感官转导。紫罗兰弧菌PCC7421,具有质子泵吸视紫红质基因,视紫红质弧菌(GR)。转录调节因子的螺旋-转角-螺旋家族具有各种基序,它们在各种金属离子的存在下调节基因表达。这里,我们报道了活性质子外泵向视紫红质与螺旋-转角-螺旋转录调节因子相互作用并调节基因表达。使用ITC分析(8μM的KD)证实这种相互作用,并确定所需的带电残基。在使用荧光和荧光素酶报告系统的体外实验中,ATP结合盒(ABC)转运蛋白和紫罗兰G转录调节因子(GvTcR)的自我调节受光调节,并且使用实时聚合酶链反应在紫罗兰中观察到基因调控。这些结果扩展了我们对微生物视紫红质功能的自然潜力和局限性的理解。
    Light is a significant factor for living organisms with photosystems, like microbial rhodopsin-a retinal protein that functions as an ion pump, channel, and sensory transduction. Gloeobacter violaceus PCC7421, has a proton-pumping rhodopsin gene, the Gloeobacter rhodopsin (GR). The helix-turn-helix family of transcriptional regulators has various motifs, and they regulate gene expression in the presence of various metal ions. Here, we report that active proton outward pumping rhodopsin interacted with the helix-turn-helix transcription regulator and regulated gene expression. This interaction is confirmed using ITC analysis (KD of 8 μM) and determined the charged residues required. During in vitro experiments using fluorescent and luciferase reporter systems, ATP-binding cassette (ABC) transporters and the self-regulation of G. violaceus transcriptional regulator (GvTcR) are regulated by light, and gene regulation is observed in G. violaceus using the real-time polymerase chain reaction. These results expand our understanding of the natural potential and limitations of microbial rhodopsin function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    居住在盐水栖息地的水生动物要么允许细胞外钠浓度符合环境值,要么将钠调节到较低水平。后一种策略需要能量驱动的过程来使钠相对于大的浓度梯度移动,以消除扩散到动物体内的过量钠。以前对无脊椎动物和脊椎动物物种的研究表明,钠泵,Na+/K+ATP酶,促进钠分泌。我们提供了盐水动物的第一个功能证据,伊蚊蚊幼虫,利用质子泵为这个过程提供动力。空泡型H+ATPase(VHA)蛋白在直肠后细胞顶膜高表达,在盐度较高的幼虫中,穿过该上皮的原位钠通量显着增加,并且对VHA的抑制剂巴弗洛霉素A1敏感。我们还报道了钠/质子交换体剪接变体的第一个证据,NHE3,高分子量和低分子量变体在直肠后细胞的顶膜上高度表达。NHE3功能的证据表明,NHE3拮抗剂显著抑制了原位钠转运,S3226.我们建议VHA的向外质子泵浦建立了有利的电动势梯度,以通过NHE3驱动钠分泌,从而产生高渗,富含钠的尿液.这种H驱动的Na分泌过程是耐盐孔雀石蚊子物种中离子调节的主要机制,并且在80多年前首次进行了研究。
    Aquatic animals residing in saline habitats either allow extracellular sodium concentration to conform to environmental values or regulate sodium to lower levels. The latter strategy requires an energy-driven process to move sodium against a large concentration gradient to eliminate excess sodium that diffuses into the animal. Previous studies of invertebrate and vertebrate species indicate a sodium pump, Na+/K+ ATPase, powers sodium secretion. We provide the first functional evidence of a saline-water animal, Aedes taeniorhynchus mosquito larva, utilizing a proton pump to power this process. Vacuolar-type H+ ATPase (VHA) protein is highly expressed on the apical membrane of the posterior rectal cells, and in situ sodium flux across this epithelium increases significantly in larvae held in higher salinity and is sensitive to Bafilomycin A1, an inhibitor of VHA. We also report the first evidence of splice variants of the sodium/proton exchanger, NHE3, with both high and low molecular weight variants highly expressed on the apical membrane of the posterior rectal cells. Evidence of NHE3 function was indicated with in situ sodium transport significantly inhibited by a NHE3 antagonist, S3226. We propose that the outward proton pumping by VHA establishes a favourable electromotive gradient to drive sodium secretion via NHE3 thus producing a hyperosmotic, sodium-rich urine. This H+- driven Na+ secretion process is the primary mechanism of ion regulation in salt-tolerant culicine mosquito species and was first investigated over 80 years ago.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    sibiricumrhodopsin(ESR)用作光驱动的质子泵,利用Lys96吸收质子并在宽pH范围内保持其活性。使用包括线性泊松-玻尔兹曼方程和具有可极化连续体模型的量子力学/分子力学方法在内的方法的组合,我们探索了其抽水活动的微观机制。Lys96,主要的质子摄取位点,由于在ESR蛋白环境中溶剂化的丧失而保持去质子化。作为Lys96的质子受体基团的Asp85不与His57形成低势垒H键。相反,去质子化的Asp85与质子化的His57形成盐桥,质子主要位于His57部分。Glu214,H键网络末端唯一的酸性残基,pKa值为6,由于溶剂化损失而略有升高。似乎H键网络[Asp85···His57···H2O····Glu214]可能是朝向蛋白质本体表面的质子传导途径。
    Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    质子泵浦视紫红质(PPR)利用阳光产生细胞能量。它们广泛分布在海洋浮游植物中,最近被证明存在于海洋硅藻的液泡膜中,使液泡成为第二个光转换细胞器。当然,第一,叶绿体,是光合作用发生的地方。然而,两种光驱动的细胞能源是完全不同的,在许多方面,相互补充。光合作用在低至中等光照强度下效果最好,在强光下被抑制,而PPR预计在高光强度下效果最好。光合速率随着温度的降低而降低,并且受到铁的限制,虽然PPR光化学不受铁的直接限制,并且不受温度的影响。因此,这两种光养系统在不同的条件下是有利的。将PPR放置在液泡中可以有益于这种互补的情况,其中根据环境条件有利于一个或另一个光养过程。在这里,液泡中PPR的存在可能对生长和存活特别有益,因为细胞器通常以多磷酸盐的磷酸酐键的形式充当细胞能量的储存位点。我们假设这种互补行为,以及将PPR产生的多余能量作为高能聚磷酸盐储存在液泡中的能力,代表了海洋中重要的生存策略,在那里,光,铁含量,和温度在各种空间和时间尺度上变化很大。
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由光驱动质子泵供电的三磷酸腺苷(ATP)生产模块是自下而上组装人造细胞样系统的强大工具。然而,这样的模块的最大效率被质子泵在重构过程中随机定向到脂质包围的纳米容器中所禁止。这里,我们使用一种通用的方法克服了这一限制,使光驱动质子泵蛋白视紫红质(pR)在脂质体中均匀定向。在插入预先形成的脂质体期间,pR在翻译后共价或非共价偶联至膜不可渗透的蛋白质结构域引导取向。在第二种情况下,我们开发了一种新的双功能接头,trisNTA-SpyTag,这允许任何含SpyCatcher的蛋白质和携带HisTag的蛋白质的可逆连接。通过监测矢量质子泵和膜电位的产生来验证所需的蛋白质取向。与ATP合酶结合,高效的ATP生产是由向内的抽水人口激励的。与其他光驱动ATP产生模块相比,均匀的方向允许在经济的蛋白质浓度下的最大速率。所提出的技术是高度可定制的,不限于光驱动质子泵,但适用于许多膜蛋白,并提供了一种克服膜重建过程中方向不匹配的通用方法。几乎不需要对感兴趣的蛋白质进行遗传修饰。
    Adenosine triphosphate (ATP)-producing modules energized by light-driven proton pumps are powerful tools for the bottom-up assembly of artificial cell-like systems. However, the maximum efficiency of such modules is prohibited by the random orientation of the proton pumps during the reconstitution process into lipid-surrounded nanocontainers. Here, we overcome this limitation using a versatile approach to uniformly orient the light-driven proton pump proteorhodopsin (pR) in liposomes. pR is post-translationally either covalently or noncovalently coupled to a membrane-impermeable protein domain guiding orientation during insertion into preformed liposomes. In the second scenario, we developed a novel bifunctional linker, trisNTA-SpyTag, that allows for the reversible connection of any SpyCatcher-containing protein and a HisTag-carrying protein. The desired protein orientations are verified by monitoring vectorial proton pumping and membrane potential generation. In conjunction with ATP synthase, highly efficient ATP production is energized by the inwardly pumping population. In comparison to other light-driven ATP-producing modules, the uniform orientation allows for maximal rates at economical protein concentrations. The presented technology is highly customizable and not limited to light-driven proton pumps but applicable to many membrane proteins and offers a general approach to overcome orientation mismatch during membrane reconstitution, requiring little to no genetic modification of the protein of interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体通常被认为是“细胞发电厂”。有趣的是,能量转换并不是他们唯一的功能。在本文的第一部分,我们回顾了线粒体在真核生物进化和人体调节中的作用,特别关注与线粒体功能障碍有关的癌症和自闭症。在第二部分,我们概述了我们以前的作品,揭示了线粒体内膜中质子泵复合物的物理操作原理。我们提出的简单模型揭示了能量交换的物理机制。它们可以进一步扩展以回答有关线粒体功能和与线粒体疾病相关的疾病的医学治疗的开放性问题。
    Mitochondria are commonly perceived as \"cellular power plants\". Intriguingly, power conversion is not their only function. In the first part of this paper, we review the role of mitochondria in the evolution of eukaryotic organisms and in the regulation of the human body, specifically focusing on cancer and autism in relation to mitochondrial dysfunction. In the second part, we overview our previous works, revealing the physical principles of operation for proton-pumping complexes in the inner mitochondrial membrane. Our proposed simple models reveal the physical mechanisms of energy exchange. They can be further expanded to answer open questions about mitochondrial functions and the medical treatment of diseases associated with mitochondrial disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发现于50多年前,细菌视紫红质是第一个公认和研究最广泛的微生物视网膜蛋白。用作光激活质子泵,它代表了典型的离子抽运系统。在这里,我们比较了细菌视紫红质光和暗适应形式的光化学动力学与第一个亚稳态光循环中间体“K”的光化学动力学。我们观察到,在黑暗中视黄醛从生物活性全反式15-抗到13-顺式的热双异构化之后,15-syn,光化学的进展甚至比前者的~0.5ps衰减更快,表现出与基态相交的弹道波包曲线。相比之下,包含13-cis的K的光激发,15-反发色团导致明显的多指数激发态衰减,包括慢得多的阶段。QM/MM计算,为了解释这些结果,强调质子化的关键作用,表明经典的四极反离子模型再现光谱数据和动力学效果不佳。ASP212的单质子化纠正了差异,并根据实验观察结果预测了三重基态结构异质性。这些发现促使人们重新评估细菌视紫红质中的反离子质子化作用,并有助于对其光化学动力学的更广泛理解。
    Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as \"K\". We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    常见的质子泵,例如HsBR和PR,将质子运出细胞。视紫红质(XeR)是第一个发现的微生物视紫红质,它是天然的向内质子泵。在这项工作中,我们将稳态(低温)FTIR和拉曼光谱与时间分辨IR和UV/Vis测量相结合,以绘制NsXeR的向内质子传输图,并确定最重要的机械特征。通过分配蛋白质骨架的特征带,视网膜发色团,视网膜席夫碱和D220,我们可以按照异构化/转换/转移模型跟踪质子可及性的转换过程。相应的瞬时IR特征表明,由于席夫碱和D220质子化步骤的时间不匹配,D220作为质子受体的初始分配需要受到质疑。K-L和MCP-MEC转换中的转换事件通过蛋白质骨架的变化和席夫碱的重排来微调。这种精细调节的机制在低温下被破坏,反映在以前报告的长寿命中间GS*被实际的红移(类O)中间替换。
    Common proton pumps, e.g. HsBR and PR, transport protons out of the cell. Xenorhodopsins (XeR) were the first discovered microbial rhodopsins which come as natural inward proton pumps. In this work we combine steady-state (cryo-)FTIR and Raman spectroscopy with time-resolved IR and UV/Vis measurements to roadmap the inward proton transport of NsXeR and pinpoint the most important mechanistic features. Through the assignment of characteristic bands of the protein backbone, the retinal chromophore, the retinal Schiff base and D220, we could follow the switching processes for proton accessibility in accordance with the isomerization / switch / transfer model. The corresponding transient IR signatures suggest that the initial assignment of D220 as the proton acceptor needs to be questioned due to the temporal mismatch of the Schiff base and D220 protonation steps. The switching events in the K-L and MCP-MEC transitions are finely tuned by changes of the protein backbone and rearrangements of the Schiff base. This finely tuned mechanism is disrupted at cryogenic temperatures, being reflected in the replacement of the previously reported long-lived intermediate GS* by an actual redshifted (O-like) intermediate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    跨膜的单向离子转运蛋白的产生代表了化学中最大的挑战之一。质子泵送视紫质由七个跨膜螺旋组成,视网膜发色团通过席夫碱键与赖氨酸侧链结合,为设计此类转运蛋白提供了有价值的见解。使这些转运蛋白特别吸引人的是发现了向外和向内的质子泵吸视紫红质。令人惊讶的是,尽管共享相同的整体结构和膜拓扑,这些蛋白质促进相反方向的质子运输,暗示着一种潜在的合理机制,可以在相似的蛋白质结构内向不同方向运输质子。在这项研究中,我们通过检查裂孔视紫红质中去质子化中间体的发色团结构来揭示这种机制,最近发现的一个向内质子泵吸视紫红质亚科,使用时间分辨共振拉曼光谱。裂孔视紫红质的光循环揭示了顺式-反式热异构化,该异构化先于视网膜发色团的席夫碱进行再质子化。值得注意的是,在其他质子泵浦视紫红质中没有观察到这种顺序,但在这里,在整个古细菌领域研究的所有七个分裂视紫红质中都观察到了这一点,强烈表明顺式-反式热异构化在再质子化之前是分裂视紫红质家族的普遍特征。基于这些发现,我们为促进质子向内传输至关重要的事件的显着顺序提出了结构基础。裂孔视紫红质向内质子传输的机制是简单而合理的。从这项研究中获得的见解为跨膜单向离子转运蛋白的设计带来了巨大的希望。
    The creation of unidirectional ion transporters across membranes represents one of the greatest challenges in chemistry. Proton-pumping rhodopsins are composed of seven transmembrane helices with a retinal chromophore bound to a lysine side chain via a Schiff base linkage and provide valuable insights for designing such transporters. What makes these transporters particularly intriguing is the discovery of both outward and inward proton-pumping rhodopsins. Surprisingly, despite sharing identical overall structures and membrane topologies, these proteins facilitate proton transport in opposite directions, implying an underlying rational mechanism that can transport protons in different directions within similar protein structures. In this study, we unraveled this mechanism by examining the chromophore structures of deprotonated intermediates in schizorhodopsins, a recently discovered subfamily of inward proton-pumping rhodopsins, using time-resolved resonance Raman spectroscopy. The photocycle of schizorhodopsins revealed the cis-trans thermal isomerization that precedes reprotonation at the Schiff base of the retinal chromophore. Notably, this order has not been observed in other proton-pumping rhodopsins, but here, it was observed in all seven schizorhodopsins studied across the archaeal domain, strongly suggesting that cis-trans thermal isomerization preceding reprotonation is a universal feature of the schizorhodopsin family. Based on these findings, we propose a structural basis for the remarkable order of events crucial for facilitating inward proton transport. The mechanism underlying inward proton transport by schizorhodopsins is straightforward and rational. The insights obtained from this study hold great promise for the design of transmembrane unidirectional ion transporters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含有视网膜的光敏蛋白-视紫红质-在许多微生物中发现。对它们的兴趣在很大程度上可以解释为它们在微生物中光能储存和光调节中的作用,以及它们在光遗传学中用于控制神经元活动的前景,包括各种疾病的治疗。微生物视紫红质的代表之一是ESR,sibiricumExiguobacterium的视网膜蛋白。ESR与同源蛋白的区别在于存在赖氨酸残基(Lys96)作为席夫碱的质子供体。此功能,以及带有His57残基的质子受体Asp85的氢键,确定ESR作为质子泵的功能特性。这篇综述审查了使用各种方法进行的ESR研究的结果,包括直接电法。将获得的数据与结构研究结果以及其他视网膜蛋白进行比较,可以得出有关氢离子在ESR和类似视网膜蛋白中运输机制的结论。
    Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号