proteinase-activated receptor-2

  • 文章类型: Journal Article
    Cathepsin S (CatS) and proteinase-activated receptor (PAR)-2 are involved in the remodelling of vascular walls and neointima formation as well as in alloantigen presentation and T-cell priming. Therefore, we hypothesized that CatS/PAR-2 inhibition/deficiency would attenuate chronic allograft vasculopathy.
    Heterotopic aortic murine transplantation was performed from C57BL/6J donors to C57BL/6J recipients (syngeneic control group), Balb/c to C57BL/6J without treatment (allogenic control group), Balb/c to C57BL/6J with twice daily oral CatS inhibitor (allogenic treatment group) and Balb/c to Par2-/- C57BL/6J (allogenic knockout group). The recipients were sacrificed on day 28 and the grafts were harvested for histological analysis and RT-qPCR.
    After 28 days, mice of the allogenic control group exhibited significant neointima formation and massive CD8 T-cell infiltration into the neointima while the syngeneic control group showed negligible allograft vasculopathy. The mRNA expression level of CatS in allografts was 5-fold of those in syngeneic grafts. Neointima formation and therefore intima/media-ratio were significantly decreased in the treatment and knockout group in comparison to the allogenic control group. Mice in treatment group also displayed significantly fewer CD8 T cells in the neointima compared with allogeneic controls. Additionally, treatment with the CatS inhibitor and PAR2-deficiency decreased mRNA-levels of interleukins and cytokines.
    In conclusion, our data indicate that inhibiting CatS and PAR-2 deficiency led to a marked reduction of neointima formation and associated inflammation in a murine heterotopic model for allograft vasculopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    牛特异性肝损害,称为嗜酸性粒细胞增生性静脉炎(EPP),主要在日本黑牛中检测到,并在门静脉区域确定了组织学上的嗜酸性粒细胞浸润和内皮增生。我们先前提出EPP作为食物过敏的病理特征和血清免疫球蛋白E的显着增加特异性卷曲码头(Rumexcrispus)在过敏原测试,然而,第一份报告认为EPP是一种非典型的牛筋膜吸虫病。在EPP病变中,嗜酸性粒细胞浸润观察到肥大的内皮,而不是肝内胆管,这与eotaxin-1的表达有关。在EPP中,肥大细胞也增加了,产生类胰蛋白酶而不含糜蛋白酶的肥大细胞随着白细胞介素-4的产生而增加。在这种情况下,观察到表达蛋白酶激活受体2(PAR-2)而非血管紧张素II的内皮周围增生。相比之下,在Fascioliasis,独特的肥大细胞既不产生类胰蛋白酶也不产生糜酶,内皮周围既不表达PAR-2也不表达血管紧张素II。有趣的是,EPP没有发生肝酶升高的肝损伤,如片形石症,并表明与严重的血清维生素A缺乏有关。这项研究表明,EPP是一种过敏性疾病,主要区别在于对过敏原的适应性免疫和对寄生虫的先天免疫。
    Cow-specific feature hepatic lesion, termed as eosinophilic proliferative phlebitis (EPP), has been mainly detected in Japanese black cattle and identified histologically eosinophilic infiltration and endothelial hyperplasia in portal areas. We previously proposed EPP as a food allergy from the pathological characteristics and a significant increase of serum immunoglobulin E specific to curly dock (Rumex crispus) in allergens testing, however, first report had regarded EPP an atypical type of bovine fascioliasis. In EPP lesions, eosinophilic infiltration was observed to the hypertrophic endothelium and not to the intrahepatic bile duct, and that was related to eotaxin-1 expression. In EPP, the mast cells increased as well as in fascioliasis, and the mast cells producing tryptase without chymase increased with interleukin-4 production. In this context, hyperplasia of periendothelium expressing proteinase-activated receptor-2 (PAR-2) and not angiotensin II was observed. Contrastably, in fascioliasis, unique mast cells producing neither tryptase nor chymase infiltrated, and the periendothelium expressed neither PAR-2 nor angiotensin II. Interestingly, EPP had not occurred liver injury with raised hepatic enzymes like fascioliasis, and suggested to a correlation with severe serum hypo-vitamin A. Overall, this study suggests that EPP is an allergic disease by main difference between adaptive immunity to allergens and innate immunity to parasites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Idiopathic interstitial pneumonia (IIP) entails a variable group of lung diseases of unknown etiology. Idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, interstitial lung diseases related to connective tissue disease (CTD-ILD), and hypersensitivity pneumonitis (HP) can manifest with similar clinical, radiological, and histopathological features. In a differential diagnosis, biomarkers can play a significant role. We assume that levels of specific cyto- or chemokines or their receptors can signal pathogenetic processes in the lungs. Eighty patients with different types of idiopathic interstitial pneumonia were enrolled in this study. Cell counts and concentrations of tumor necrosis factor (TNF)-α, interleukin-4 receptor α, proteinase-activated receptor (PAR)-2, matrix metalloproteinase (MMP)-7, and B cell-activating factor were measured in bronchoalveolar lavage fluid using commercial ELISA kits. High resolution computer tomography results were evaluated using alveolar and interstitial (IS) score scales. Levels of TNF-α were significantly higher in HP compared to fibrosing IIP (p < 0.0001) and CTD-ILD (p = 0.0381). Concentrations of IL-4Rα, PAR-2, and MMP-7 were positively correlated with IS (p = 0.0009; p = 0.0256; p = 0.0015, respectively). Since TNF-α plays a major role in inflammation, our results suggest that HP is predominantly an inflammatory disease. From the positive correlation with IS we believe that IL-4Rα, PAR-2, and MMP-7 could serve as fibroproliferative biomarkers in differential diagnosis of IIP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Fibroblasts are the chief secretory cells of the extracellular matrix (ECM) responsible for basal deposition and degradation of the ECM under normal conditions. During stress, fibroblasts undergo continuous activation, which is defined as the differentiation of fibroblasts into myofibroblasts, a cell type with an elevated capacity for secreting ECM proteins. Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed transmembrane glycoprotein and exerts effects that are both dependent and independent of its enzymatic activity. DPP4 has been demonstrated to define fibroblast populations in human skin biopsies of systemic sclerosis. Shedding of DPP4 from different tissues into the circulation appears to be involved in the pathogenesis of the diseases. The mechanism underlying soluble DPP4-induced dermal fibrosis has not been clearly determined. The effects of DPP4 on murine 3T3 fibroblasts and human dermal fibroblasts were evaluated by measuring the expression of fibrotic proteins, such as α-SMA and collagen. Soluble DPP4 stimulated the activation of fibroblasts in a dose-dependent manner by activating nuclear factor-kappa B (NF-κB) and suppressor of mothers against decapentaplegic (SMAD) signaling. Blocking proteinase-activated receptor-2 (PAR2) abrogated the DPP4-induced activation of NF-κB and SMAD and expression of fibrosis-associated proteins in fibroblasts. Linagliptin, a clinically available DPP4 inhibitor, was observed to abrogate the soluble DPP4-induced expression of fibrotic proteins. This study demonstrated the mechanism underlying soluble DPP4, which activated NF-κB and SMAD signaling through PAR2, leading to fibroblast activation. Our data extend the current view of soluble DPP4. Elevated levels of circulating soluble DPP4 may contribute to one of the mediators that induce dermal fibrosis in patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Our previous research revealed that trypsin is abundantly expressed in atherosclerotic plaques and its distribution overlaps with that of matrix metalloproteinase-9 (MMP-9). This study was performed to explore the possible roles of trypsin in vulnerable atherosclerotic plaque formation.
    Twenty-four rabbits were randomly assigned to a normal (control) group, an atherosclerosis (experimental) group and a trypsin inhibitor (aprotinin) group. In the 13th feeding week, the aprotinin group was treated with 5 mg/kg/day aprotinin via ear vein for 4 weeks. At the end of the 16th week, coronary arterial and aortic expression of trypsin, proteinase-activated receptor-2 (PAR-2), activated MMP-9, and pro-inflammatory cytokines were significantly greater in the experimental group than in the control group. Aprotinin decreased trypsin expression and activation in plaques, blocked PAR-2 and MMP-9 activation, and decreased cytokine expression; it also increased fibrous cap thickness, decreased the intima-media thickness and intimal/medial ratio, thus significantly ameliorating plaque vulnerability. Upregulated trypsin, MMP-9 and PAR-2 were also found in coronary intimal atherosclerotic plaques of patients undergoing coronary artery bypass grafting.
    Ectopic trypsin was significantly upregulated in atherosclerotic plaques, which increased pro-inflammatory cytokine levels by activating PAR-2 and promoted plaque instability by activating proMMP-9, thereby promoting atherosclerosis and plaque vulnerability. In addition, the high trypsin expression in human coronary intimal atherosclerotic plaques suggests that targeting trypsin may be a new strategy for acute coronary syndrome prevention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Alloantigen presentation is an essential process in acute allorejection. In this context, we speculated on a pathogenic role of cathepsin S (Cat-S), a cysteine protease known to promote antigenic peptide loading into MHC class II and to activate protease-activated receptor (PAR)-2 on intrarenal microvascular endothelial and tubular epithelial cells. Single-cell RNA sequencing and immunostaining of human kidney allografts confirmed Cat-S expression in intrarenal mononuclear phagocytes. In vitro, Cat-S inhibition suppressed CD4 + T cell lymphocyte activation in a mixed lymphocyte assay. In vivo, we employed a mouse model of kidney transplantation that showed preemptive Cat-S inhibition significantly protected allografts from tubulitis and intimal arteritis. To determine the contribution of PAR-2 activation, first, Balb/c donor kidneys were transplanted into Balb/c recipient mice without signs of rejection at day 10. In contrast, kidneys from C57BL/6J donor mice revealed severe intimal arteritis, tubulitis, interstitial inflammation, and glomerulitis. Kidneys from Par2-deficient C57BL/6J mice revealed partial protection from tubulitis and lower intrarenal expression levels for Fasl, Tnfa, Ccl5, and Ccr5. Together, we conclude that Cat-S and PAR-2 contribute to immune dysregulation and kidney allograft rejection, possibly involving Cat-S-mediated activation of PAR-2 on recipient parenchymal cells in the allograft.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNASSIGNED: The pathogenesis of lung cancer is unclear. Less expression of p53 or p53 mutation was identified in lung cancer cells, which plays a role in the development of lung cancer. Recent reports indicate that Bcl2-like protein-12 (Bcl2L12) can inhibit the expression of p53. Lung cancer cells express proteinase-activated receptor-2 (PAR2). This study tests the hypothesis that activation of PAR2 inhibits the expression of p53 in lung cancer cells.
    UNASSIGNED: Lung cancer cells were collected from patients with non-small cell lung cancer (NSCLC). The cells were exposed to active peptides or trypsin in the culture for 48 h. The expression of p53 was assessed by RT-qPCR and Western blotting.
    UNASSIGNED: We observed that lung cancer cells express Bcl2L12. Activation of PAR2 increases expression of Bcl2L12 in lung cancer cells. Bcl2L12 mediates PAR2-suppressed p53 expression in lung cancer cells. IgE-activated mast cell suppression of p53 expression in lung cancer cells can be prevented by knocking down Bcl2L12. The Bcl2L12 bound Mdm2, the transcription factor of p53, to prevent the Mdm2 from binding to the promoter of p53 and thus inhibited p53 expression in lung cancer cells. PAR2 could attenuate lung cancer cell apoptosis via inducing Bcl2L12.
    UNASSIGNED: Lung cancer cells express Bcl2L12, which mediates the effects of activation of PAR2 on suppressing the expression of p53 in lung cancer cells, implying that Bcl2L12 may be a novel therapeutic target for the treatment of lung cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or β-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gβγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gβγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gβγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Comparative Study
    Hyperglycaemia is a major contributor to diabetic cardiovascular disease with hyperglycaemia-induced endothelial dysfunction recognized as the initiating cause. Coagulation pathway-regulated proteinase-activated receptors (PARs) that can regulate vascular tone in vivo cause eNOS-mediated endothelium-dependent vasodilation; but, the impact of hyperglycaemia on this vasodilatory action of PAR stimulation and the signalling pathways involved are unknown. We hypothesized that vascular sodium-glucose co-transporter 2 activity and hyperglycaemia-induced oxidative stress involving Src-kinase, EGF receptor-kinase, Rho-kinase and protein-kinase-C biochemical signalling pathways would compromise PAR2-mediated endothelium-dependent vasodilation. Using an organ culture approach, wherein murine aorta rings were maintained for 24 h at hyperglycaemic 25 mM versus euglycaemic 10 mM glucose, we observed severely blunted acetylcholine/muscarinic and PAR2-mediated endothelial eNOS/NO-dependent vasodilation. PEG-catalase, superoxide-dismutase, and NADPH-oxidase inhibition (VAS2870) and either SGLT2-inhibition (canagliflozin/dapagliflozin/empagliflozin) or antioxidant gene induction (sulforaphane), prevented the hyperglycaemia-induced impairment of PAR2-mediated vasodilation. Similarly, inhibition of Src-kinase, EGF receptor-kinase, protein kinase-C and Rho-kinase also preserved PAR2-mediated vasodilation in tissues cultured under hyperglycaemic conditions. Thus, intracellular hyperglycaemia, that can be prevented with an inhibitor of the SGLT2 cotransporter that was identified in the vascular tissue and tissue-derived cultured endothelial cells by qPCR, western blot and immunohistochemistry, leads to oxidative stress that compromises PAR2-mediated NOS-dependent vasodilation by an NAPDH oxidase/reactive-oxygen-species-triggered signalling pathway involving EGFR/Src/Rho-kinase and PKC. The data point to novel antioxidant therapeutic strategies including use of an SGLT2 inhibitor and sulforaphane to mitigate hyperglycaemia-induced endothelial dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Five patients complaining of severe pain due to severe post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP) underwent nasopancreatic drainage (NPD) placement. Pain relief was achieved on the second, fourth, and fifth day in three, one, and one patients, respectively. Four patients underwent pancreatic juice culture; all were positive. Our results suggest that NPD can relieve severe PEP with severe pain. Bacteria-induced protease-activated receptor-2 activation may be associated with PEP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号