protein crystalline inclusions

  • 文章类型: Journal Article
    3'-磷酸腺苷-5'-磷酸硫酸盐(PAPS)是硫酸盐的生物活性形式,参与所有生物硫酸化反应。PAPS的酶转化方法是有前途的,但酶的纯化和储存效率低、成本高限制了其实际应用。这里,我们报道了一种基于蛋白质晶体包合物(PCI)的酶固定系统的PAPS生物合成。首先,体内结晶包涵蛋白CipA被鉴定为用于固定双功能PAPS合酶(ASAK)的有效自动组装标签。在表征了铜绿假单胞菌的多磷酸盐外切核酸酶PaPPX的焦磷酸激酶活性后,并优化接头片段,构建了自组装酶ASAK-PT-CipA和PaPPX-PT-CipA。然后,将具有高稳定性的自组装酶ASAK-PT-CipA和PaPPX-PT-CipA共表达并固定化以构建转化系统。ATP和硫酸盐对PAPS的最高转化率达到90%,固定化酶可重复使用10次。目前的工作提供了一个方便,高效,易于扩大ATP和硫酸盐生物合成PAPS的自动固定化系统。固定化系统还代表了一种通过促进纯化来降低PAPS生产成本的新方法。storage,以及相关酶的重复使用,这将促进糖胺聚糖和含硫天然化合物生物技术生产的研究。
    3\'-Phosphoadenosine-5\'-phosphosulfate (PAPS) is the bioactive form of sulfate and is involved in all biological sulfation reactions. The enzymatic transformation method for PAPS is promising, but the low efficiency and high cost of enzyme purification and storage restrict its practical applications. Here, we reported PAPS biosynthesis with a protein crystalline inclusion (PCI)-based enzyme immobilization system. First, the in vivo crystalline inclusion protein CipA was identified as an efficient auto-assembly tag for immobilizing the bifunctional PAPS synthase (ASAK). After characterizing the pyrophosphokinase activity of a polyphosphate exonuclease PaPPX from Pseudomonas aeruginosa, and optimizing the linker fragment, auto-assembled enzymes ASAK-PT-CipA and PaPPX-PT-CipA were constructed. Then, the auto-assembled enzymes ASAK-PT-CipA and PaPPX-PT-CipA with high stability were co-expressed and immobilized for constructing a transformation system. The highest transformation rate of PAPS from ATP and sulfate reached 90%, and the immobilized enzyme can be reused 10 times. The present work provided a convenient, efficient, and easy to be enlarged auto-immobilization system for PAPS biosynthesis from ATP and sulfate. The immobilization system also represented a new approach to reduce the production cost of PAPS by facilitating the purification, storage, and reuse of related enzymes, and it would boost the studies on biotechnological production of glycosaminoglycans and sulfur-containing natural compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Protein purification is an indispensable step in diverse fields of biological research or production process. Conventional purification methods including the affinity purification or the usage of self-aggregating tags suffered from many drawbacks such as the complicated steps, high cost and low efficiency. Moreover, the fusion tag usually had negative effects on the activity of the target protein. To address the above issues, here we propose a novel protein purification method which needs simple operation steps, and this method is mediated by the combination of CipA protein and a mini-intein (Synechocystis sp. PCC6803 DnaB, Ssp DnaB), depending on the assembly function of CipA and the self-cleavage function of Ssp DnaB. To realize the purification, CipA-DnaB-eGFP protein was expressed and assembled into protein crystalline inclusions (PCIs) in E. coli. Then, only cell lysis, cleavage and centrifugation steps were required to purify eGFP. Purified eGFP was in the supernatant with a purity of over 90%. The cleavage efficiency and the yield of eGFP reached 51.96% and 13.99 ± 0.88 mg/L fermentation broth, respectively. Furthermore, to broaden the application of this approach, three other proteins which were maltose binding protein (MBP), ketoisovalerate decarboxylase (Kivd) and alcohol dehydrogenase (AdhP) were purified with high cleavage efficiency. The purified Kivd and AdhP remained high specific activities. This work demonstrated an effective and convenient protein purification method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Pyrogallol is a valuable phenolic compound and displays various physiological and pharmaceutical functions. Chemical synthesis of pyrogallol suffered from many issues, including environmental pollution, high cost, and low yield. Here, to address the above drawbacks, an artificial pathway for de novo pyrogallol production was established and this pathway only needed two exogenous enzymes (Y385F/T294A PobA and 3,4-dihydroxybenzoic acid decarboxylase (PDC)). Y385F/T294A PobA is a mutant of PobA which is a hydroxylase from Pseudomonas aeruginosa, while PDC is a decarboxylase from Klebsiella pneumoniae subsp. pneumoniae. First, the conversion efficiency of PDC was tested and 1800 ± 100 mg/L pyrogallol was generated from 4 g/L gallic acid (GA). Subsequently, assembly of the whole pathway enabled 33 ± 6 mg/L pyrogallol production from simple carbon sources. After that, based on the assembling property of CipA (a hydrophobic protein) and to enhance the hydroxylation of 3,4-dihydroxybenzoic acid, CipA was employed to organize its fusion (Y385F/T294A PobA) into protein crystalline inclusions (PCIs). Remarkably, the formation of CipA-Y385F/T294A PobA PCIs increased the pyrogallol production to 60 ± 6 mg/L, a 1.8 ± 0.4-fold higher value as compared to the strain without enzyme self-assembly. Additionally, the titer of pyrogallol was enhanced to 80 ± 1 mg/L through yeast extract concentration optimization. This work not only realizes the biosynthesis of pyrogallol from renewable carbon sources but also demonstrates that using CipA-mediating enzyme self-assembly could reinforce the hydroxylation efficiency of Y385F/T294A PobA, resulting in the enhancement of pyrogallol production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号