protein/DNA interactions

  • 文章类型: Journal Article
    细胞Notch信号转导途径与卡波西肉瘤相关疱疹病毒(KSHV)和其他γ-疱疹病毒感染密切相关。RBP-Jk,典型Notch通路的细胞DNA结合成分,是病毒感染和未感染动物细胞中的关键Notch下游效应蛋白。从潜伏期重新激活KSHV需要病毒裂解开关蛋白,Rta,在病毒DNA内的许多位点上与RBP-Jk形成复合物。在卡波西肉瘤(KS)和原发性积液淋巴瘤(PEL)模型中,本构Notch活性对于KSHV病理生理学至关重要,我们证明Notch1在受感染的Vero细胞中也具有组成活性。尽管KSHV基因组包含>100个RBP-JkDNA基序,我们表明,在高度定量的反式互补报告病毒系统中,激活的Notch的四种同工型都不能有效地重新激活病毒的潜伏期。然而,Notch对再激活有积极贡献,因为用γ-分泌酶抑制剂(GSI)广泛抑制Notch1-4或显性阴性策划者样1(dnMAML1)共激活剂的表达严重减少了Vero细胞感染性KSHV的产生。KSHV产生的减少与Vero和PEL细胞中病毒转录的基因特异性减少有关。siRNA对Notch1的特异性抑制部分减少了感染性KSHV的产生,和NICD1在再激活过程中与病毒DNA形成启动子特异性复合物。我们得出的结论是,组成型Notch活性是感染性KSHV的强大生产所必需的,我们的结果表明,在病毒再激活过程中,激活的Notch1是MAML1/RBP-Jk/DNA复合物的前病毒成员。
    目的:卡波西肉瘤相关疱疹病毒(KSHV)操纵宿主细胞致癌Notch信号通路,从潜伏期和细胞发病机制中重新激活病毒。KSHV再激活需要病毒蛋白Rta在功能上与RBP-Jk相互作用,Notch通路的DNA结合成分,并与启动子DNA驱动生产周期基因的转录。我们表明,Notch途径在KSHV再激活期间具有组成性活性,并且对于感染性病毒后代的强大生产至关重要。在再激活过程中抑制Notch会降低特定病毒基因的表达,但不会影响宿主细胞的生长。虽然Notch不能单独重新激活KSHV,Rta的必要表达揭示了Notch在重新激活中的先前未被重视的作用。我们建议激活的Notch以启动子特异性方式与Rta合作,该方式部分由Rta在再激活过程中重新分配与病毒结合的RBP-JkDNA的能力编程。
    The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi\'s sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi\'s sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation.
    OBJECTIVE: Kaposi\'s sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta\'s ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤抑制蛋白p53在响应细胞应激时积累,因此以p53水平和时间依赖性方式协调多个基因的表达,以克服应激后果。目前尚不清楚其分子机制。以前,我们报道了DNA扭转灵活性在p53反应元件(REs)之间有区别,p53基础水平的反式激活与p53REs灵活性相关.这里,我们计算了~200个p53REs的灵活性。通过将p53靶基因激活的功能结果与其RE的计算灵活性联系起来,我们表明,已知属于在应激后迅速激活的通路的基因所含有的REs,相对于已知参与应激后激活的通路的基因的REs,这些REs明显更灵活.实验验证了属于不同途径的几种p53RE的整体结构特性。此外,由柔性p53RE驱动的报告基因表达发生在较低的p53水平,并且比刚性RE的表达速率更快。此外,对已发表的p53靶基因的内源性mRNA水平作为REs的灵活性的函数进行的分析显示,早期基因与晚期基因在其REs的灵活性特性上有显著差异,并且高度灵活的p53REs能够使早期反应基因具有高激活水平。总的来说,我们证明,p53REs的DNA灵活性通过促进p53依赖性靶基因表达的初始步骤,显著促进了p53系统的功能选择性,从而有助于p53系统中的生存与死亡决定。
    The tumor suppressor protein p53 accumulates in response to cellular stress and consequently orchestrates the expression of multiple genes in a p53-level and time-dependent manner to overcome stress consequences, for which a molecular mechanism is currently unknown. Previously, we reported that DNA torsional flexibility distinguishes among p53 response elements (REs) and that transactivation at basal p53 levels is correlated with p53 REs flexibility. Here, we calculated the flexibility of ~200 p53 REs. By connecting functional outcomes of p53-target genes\' activation to the calculated flexibility of their REs, we show that genes known to belong to pathways that are activated rapidly upon stress contain REs that are significantly more flexible relative to REs of genes known to be involved in pathways that are activated later in the response to stress. The global structural properties of several p53 REs belonging to different pathways were experimentally validated. Additionally, reporter-gene expression driven by flexible p53 REs occurred at lower p53 levels and with faster rates than expression from rigid REs. Furthermore, analysis of published endogenous mRNA levels of p53-target genes as a function of REs\' flexibility showed that early versus late genes differ significantly in their flexibility properties of their REs and that highly flexible p53 REs enable high-activation level exclusively to early-response genes. Overall, we demonstrate that DNA flexibility of p53 REs contributes significantly to functional selectivity in the p53 system by facilitating the initial steps of p53-dependent target-genes expression, thereby contributing to survival versus death decisions in the p53 system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了扩展生物传感器-SPR在表征核蛋白对DNA识别中的价值,我们报告了通过两个ETS家族转录因子Elk1和ETV6对DNA促进的靶标搜索的比较分析。由于在高度保守的DNA结合基序内编码的广泛的物理化学性质,ETS结构域代表了用于开发基于生物传感器的技术的有吸引力的系统。建立在一种生物传感器方法上,其中蛋白质被定量隔离并作为非特异性复合物呈现给固定的同源DNA,我们评估了内在同源和非特异性亲和力对远程(节段间)靶标搜索的影响.DNA促进结合的平衡常数对蛋白质的内在结合特性敏感,因此当通过转移与转移发生结合时,它们对同源DNA的相对特异性得到增强。没有非特异性DNA。缔合和解离动力学的直接测量揭示了激活复合物的离子特征,证明了DNA促进解离,即使Elk1和ETV6只有一个单一的DNA结合表面。在盐浓度掩盖了平衡时非特异性预结合的影响,然而,同源结合的解离动力学与不存在非特异性DNA的条件不同。这些结果进一步加强了生理环境中远程DNA易位的重要性。
    To extend the value of biosensor-SPR in the characterization of DNA recognition by nucleoproteins, we report a comparative analysis of DNA-facilitated target search by two ETS-family transcription factors: Elk1 and ETV6. ETS domains represent an attractive system for developing biosensor-based techniques due to a broad range of physicochemical properties encoded within a highly conserved DNA-binding motif. Building on a biosensor approach in which the protein is quantitatively sequestered and presented to immobilized cognate DNA as nonspecific complexes, we assessed the impact of intrinsic cognate and nonspecific affinities on long-range (intersegmental) target search. The equilibrium constants of DNA-facilitated binding were sensitive to the intrinsic binding properties of the proteins such that their relative specificity for cognate DNA were reinforced when binding occurred by transfer vs. without nonspecific DNA. Direct measurement of association and dissociation kinetics revealed ionic features of the activated complex that evidenced DNA-facilitated dissociation, even though Elk1 and ETV6 harbor only a single DNA-binding surface. At salt concentrations that masked the effects of nonspecific pre-binding at equilibrium, the dissociation kinetics of cognate binding were nevertheless distinct from conditions under which nonspecific DNA was absent. These results further strengthen the significance of long-range DNA-facilitated translocation in the physiologic environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号