protease inhibitor

蛋白酶抑制剂
  • 文章类型: Journal Article
    人类冠状病毒(hCoV)每年感染数百万人。其中,MERS,SARS-CoV-1和SARS-CoV-2引起了显着的发病率和死亡率,它们的出现凸显了未来可能爆发冠状病毒的风险。因此,需要广泛有效的抗冠状病毒药物。如广泛有效地使用Paxlovid(nirmatrelvir,利托那韦)。然而,由于存在耐药性的风险,需要进一步的治疗方案.为了便于评估冠状病毒蛋白酶的功能及其药理抑制作用,我们开发了一种能够在生物安全1级条件下快速可靠地定量Nsp5活性的方法.它基于由Nsp5识别位点分离的ACE2-Gal4转录因子融合蛋白。Nsp5的切割释放Gal4转录因子,然后诱导高斯荧光素酶的表达。我们的测定与来自所有hCoV的Nsp5蛋白酶相容,并且允许同时测量测试化合物的抑制和细胞毒性作用。概念验证测量证实尼马特雷韦,GC376和洛匹那韦抑制SARS-CoV-2Nsp5功能。此外,该试验准确预测了Nsp5突变对催化活性和抑制剂敏感性的影响。总的来说,报告分析适用于评估病毒蛋白酶活性。
    Human coronaviruses (hCoVs) infect millions of people every year. Among these, MERS, SARS-CoV-1, and SARS-CoV-2 caused significant morbidity and mortality and their emergence highlights the risk of possible future coronavirus outbreaks. Therefore, broadly-active anti-coronavirus drugs are needed. Pharmacological inhibition of the hCoV protease Nsp5 (3CLpro) is clinically beneficial as shown by the wide and effective use of Paxlovid (nirmatrelvir, ritonavir). However, further treatment options are required due to the risk of drug resistance. To facilitate the assessment of coronavirus protease function and its pharmacological inhibition, we developed an assay allowing rapid and reliable quantification of Nsp5 activity under biosafety level 1 conditions. It is based on an ACE2-Gal4 transcription factor fusion protein separated by a Nsp5 recognition site. Cleavage by Nsp5 releases the Gal4 transcription factor, which then induces the expression of Gaussia luciferase. Our assay is compatible with Nsp5 proteases from all hCoVs and allows simultaneous measurement of inhibitory and cytotoxic effects of the tested compounds. Proof-of-concept measurements confirmed that nirmatrelvir, GC376 and lopinavir inhibit SARS-CoV-2 Nsp5 function. Furthermore, the assay accurately predicted the impact of Nsp5 mutations on catalytic activity and inhibitor sensitivity. Overall, the reporter assay is suitable for evaluating viral protease activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们合成了一种新型的高选择性严重急性呼吸综合征冠状病毒2(SARS-CoV-2)主要蛋白酶肽模拟抑制剂,该抑制剂模拟了复制酶1ab识别序列-Val-Leu-Gln-,并利用半胱氨酸选择性酰氧基甲基酮作为亲电子弹头靶向活性位点Cys145。利用锁定P3(Val)和P2(Leu)残基之间构象的约束环肽,我们确定了一种高选择性的抑制剂,该抑制剂填充了PF-00835231的亮氨酸残基侧链所占据的P2口袋和奈玛特雷韦中的二甲基-3-氮杂双环己烧基序(PF-07321332).该策略导致有效且高度选择性的Mpro抑制剂,而不抑制必需的宿主组织蛋白酶半胱氨酸或丝氨酸蛋白酶。先导原型化合物1(MProIC50=230±18nM)还在体外抑制多种SARS-CoV-2变体的复制,包括值得关注的SARS-CoV-2变种,并且可以在较低浓度下与病毒RNA聚合酶抑制剂协同作用,remdesivir,抑制复制。它还可以减少SARS-CoV-2Omicron感染的叙利亚金仓鼠中SARS-CoV-2的复制,而没有明显的毒性,证明体内功效。这种新颖的前导结构为优化靶向发展SARS-CoV-2耐药性的改进的试剂提供了基础,这些试剂可以选择性地作用于Mpro相对于宿主蛋白酶,并且由于非特异性靶向而不太可能具有脱靶效应。针对主要蛋白酶(Mpro)的活性位点开发抑制剂,在冠状病毒中高度保守,预计将为不断发展的SARS-CoV-2耐药性赋予更高的遗传障碍。选择性抑制病毒Mpro的药物不太可能具有脱靶效应,需要努力改善这种疗法。
    We have synthesized a novel and highly selective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease peptide mimetic inhibitor mimicking the replicase 1ab recognition sequence -Val-Leu-Gln- and utilizing a cysteine selective acyloxymethyl ketone as the electrophilic warhead to target the active site Cys145. Utilizing a constrained cyclic peptide that locks the conformation between the P3 (Val) and P2 (Leu) residues, we identified a highly selective inhibitor that fills the P2 pocket occupied by the leucine residue sidechain of PF-00835231 and the dimethyl-3-azabicyclo-hexane motif in nirmatrelvir (PF-07321332). This strategy resulted in potent and highly selective Mpro inhibitors without inhibiting essential host cathepsin cysteine or serine proteases. The lead prototype compound 1 (MPro IC50 = 230 ± 18 nM) also inhibits the replication of multiple SARS-CoV-2 variants in vitro, including SARS-CoV-2 variants of concern, and can synergize at lower concentrations with the viral RNA polymerase inhibitor, remdesivir, to inhibit replication. It also reduces SARS-CoV-2 replication in SARS-CoV-2 Omicron-infected Syrian golden hamsters without obvious toxicities, demonstrating in vivo efficacy. This novel lead structure provides the basis for optimization of improved agents targeting evolving SARS-CoV-2 drug resistance that can selectively act on Mpro versus host proteases and are less likely to have off-target effects due to non-specific targeting. Developing inhibitors against the active site of the main protease (Mpro), which is highly conserved across coronaviruses, is expected to impart a higher genetic barrier to evolving SARS-CoV-2 drug resistance. Drugs that selectively inhibit the viral Mpro are less likely to have off-target effects warranting efforts to improve this therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    旋毛虫新型胱抑素(TsCstN)在脂多糖(LPS)诱导过程中抑制组织蛋白酶L(CatL)活性和巨噬细胞炎症。为了确定蛋白酶抑制区,本研究应用了一种计算机建模方法来模拟TsCstN(Ts01)的截断位点,创建了四个截断的形式,包括TsCstNΔ1-39(Ts02),TsCstNΔ1-71(Ts03),TsCstNΔ1-20,Δ73-117(Ts04),和TsCstNΔ1-20,Δ42-117(Ts05)。用AlphaFoldColab建模的这些截短物的叠加表明,它们的结构比用I-TASSER建模的结构更类似于Ts01。此外,Ts04表现出与Ts01的结构最接近的相似性。重组Ts01(rTs01)和截短蛋白(rTs02,rTs03和rTs04)在原核表达系统中成功表达,同时合成了Ts05,大小约为14、12、8、10和2.5kDa,分别。当确定CatL活性的抑制作用时,rTs01和rTs04均能有效降低体外CatL活性。因此,α1和L1区的组合可能足以抑制CatL。这项研究提供了对TsCstN的全面见解,特别是关于其蛋白质功能和针对CatL的抑制结构域。
    The Trichinella spiralis novel cystatin (TsCstN) inhibits cathepsin L (CatL) activity and inflammation of macrophages during lipopolysaccharide (LPS) induction. To identify the protease inhibitory region, this study applied an in silico modeling approach to simulate truncation sites of TsCstN (Ts01), which created four truncated forms, including TsCstN∆1-39 (Ts02), TsCstN∆1-71 (Ts03), TsCstN∆1-20, ∆73-117 (Ts04), and TsCstN∆1-20, ∆42-117 (Ts05). The superimposition of these truncates modeled with AlphaFold Colab indicated that their structures were more akin to Ts01 than those modeled with I-TASSER. Moreover, Ts04 exhibited the closest resemblance to the structure of Ts01. The recombinant Ts01 (rTs01) and truncated proteins (rTs02, rTs03, and rTs04) were successfully expressed in a prokaryotic expression system while Ts05 was synthesized, with sizes of approximately 14, 12, 8, 10, and 2.5 kDa, respectively. When determining the inhibition of CatL activity, both rTs01 and rTs04 effectively reduced CatL activity in vitro. Thus, the combination of the α1 and L1 regions may be sufficient to inhibit CatL. This study provides comprehensive insights into TsCstN, particularly regarding its protein function and inhibitory domains against CatL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多病毒基因组编码促进感染的蛋白酶。植物识别病毒蛋白酶的分子机制在很大程度上尚未被探索。使用Vignaunguiculata和cow豆花叶病毒(CPMV)的系统,我们鉴定了一种与CPMV编码的24KPro相互作用的of豆脂质转移蛋白(LTP1),一种半胱氨酸蛋白酶,但不具有酶活性的突变体24KPro(C166A)。生化分析表明,LTP1抑制了外壳蛋白前体大外壳蛋白-小外壳蛋白的24KPro蛋白水解裂解。一过性LTP1在cow豆中的过表达减少了CPMV感染,而RNA干扰介导的LTP1沉默增加了cow豆中CPMV的积累。LTP1主要位于未感染植物细胞的质外体中,在CPMV感染后,大部分LTP1被重新定位到细胞内区室,包括叶绿体.此外,在稳定的LTP1转基因烟草植物中,LTP1抑制大豆花叶病毒(SMV)核包涵有蛋白酶活性,SMV积累量显著降低。我们建议cow豆LTP1通过直接抑制病毒半胱氨酸蛋白酶活性来抑制CPMV和SMV的积累。
    Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    报道描述了接受尼马特雷韦治疗的COVID-19患者的SARS-CoV-2反弹,3CL蛋白酶抑制剂。原因仍然是个谜,虽然耐药,再感染,和缺乏足够的免疫反应已被排除。我们现在提供病毒学发现,为病毒反弹的原因提供了线索,这发生在20%的治疗病例中。在用nirmatrelvir或另一种3CL蛋白酶抑制剂治疗后,在体外实验证明了传染性SARS-CoV-2的持久性,但不是聚合酶抑制剂,Remdesivir.这种感染形式慢慢腐烂,半衰期为1天,这表明,随着药物的消除,其持久性可能会超过重新点燃SARS-CoV-2感染的治疗过程。值得注意的是,将nirmatrelvir治疗延长超过8天可以消除体外病毒反弹。我们的发现为未来的病毒持久性研究指明了特定的方向,并提供了应进行临床测试的特定治疗建议。
    Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ∼20% of the treated cases. Persistence of infectious SARS-CoV-2 was experimentally documented in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a polymerase inhibitor, remdesivir. This infectious form decayed slowly with a half-life of ∼1 day, suggesting that its persistence could outlive the treatment course to re-ignite SARS-CoV-2 infection as the drug is eliminated. Notably, extending nirmatrelvir treatment beyond 8 days abolished viral rebound in vitro. Our findings point in a particular direction for future investigation of virus persistence and offer a specific treatment recommendation that should be tested clinically.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已经开发了解决纤溶丝氨酸蛋白酶纤溶酶的S1口袋和主要位点的两个系列的大环抑制剂。在第一系列中,P1氨甲酰基残基在P1'位与4-氨基苯丙氨酸偶联,它提供了中等有效的抑制剂,抑制常数约为1µM。在第二个系列中,取代的联苯丙氨酸作为P1残基掺入,导致大约1000倍的强纤溶酶抑制剂,最好的化合物具有亚纳摩尔抑制常数。与其他胰蛋白酶样丝氨酸蛋白酶如胰蛋白酶相比,最有效的化合物作为纤溶酶抑制剂已经表现出一定的选择性,血浆激肽释放酶,凝血酶,活化蛋白Ca,以及因子XIa和Xa。对于第二系列的抑制剂28,与Ser195Ala微纤溶酶突变体复合的共晶结构表明P2残基采用多种构象。大多数与纤溶酶和周围水分子的极性接触是通过P1氨甲环酰残基介导的,而大环的结合构象主要由两个分子内氢键稳定。
    Two series of macrocyclic inhibitors addressing the S1 pocket and the prime site of the fibrinolytic serine protease plasmin have been developed. In the first series the P1 tranexamoyl residue was coupled to 4-aminophenylalanine in P1\' position, which provided moderately potent inhibitors with inhibition constants around 1 µM. In the second series, a substituted biphenylalanine was incorporated as P1\' residue leading to approximately 1000-fold stronger plasmin inhibitors, the best compounds possess subnanomolar inhibition constants. The most effective compounds already exhibit a certain selectivity as plasmin inhibitors compared to other trypsin-like serine proteases such as trypsin, plasma kallikrein, thrombin, activated protein Ca, as well as factors XIa and Xa. For inhibitor 28 of the second series, the co-crystal structure in complex with a Ser195Ala microplasmin mutant revealed the P2\' residue adopts multiple conformations. Most polar contacts to plasmin and surrounding water molecules are mediated through the P1 tranexamoyl residue, whereas the bound conformation of the macrocycle is mainly stabilized by two intramolecular hydrogen bonds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金黄色葡萄球菌表达三种高亲和力中性粒细胞丝氨酸蛋白酶(NSP)抑制剂,称为胞外粘附蛋白结构域(EAP)蛋白。而EapH1和EapH2由单个EAP域组成,金黄色葡萄球菌菌株Mu50的模块化细胞外粘附蛋白(Eap)由四个EAP结构域组成。我们最近报道EapH2可以同时结合和抑制组织蛋白酶G(CG)和中性粒细胞弹性蛋白酶(NE),这是两个最丰富的NSP。EapH2的这种不寻常特性源于位于其EAP结构域相对面上的独立CG和NE结合位点。在这里,我们使用X射线晶体学和酶测定来显示Eap的所有四个单独结构域(即Eap1、Eap2、Eap3和Eap4)表现出与CG和NE形成三元复合物的EapH2样能力,其同时抑制两种酶。我们发现Eap1,Eap2和Eap3在NSP抑制方面具有相似的功能谱,但是Eap4表现出意想不到的同时抑制两种NE酶的能力。用X射线晶体学,我们确定Eap4中的第二个NE结合位点通过其EAP结构域的相同区域产生,该区域也包含其CG结合位点.有趣的是,小角度X射线散射数据表明,溶液中存在NE/Eap4/NE三元配合物的稳定的尾对尾二聚体。这种安排与Eap的两结构域片段中所有可用位点的NSP结合相容。一起,我们的工作表明Eap是NSPs的多价抑制剂。这也增加了NSP结合的Eap的高阶结构可能具有独特功能特性的可能性。
    Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    HIV耐药性损害了抗逆转录病毒疗法(ART)抑制病毒复制的能力,导致治疗失败。这项研究调查了中国东南部繁荣城市(温州)的新诊断个体中治疗前耐药(PDR)的患病率。在2022年1月至12月期间,对473名新诊断的未接受ART治疗的HIV-1感染者进行了横断面调查。HIV-1的蛋白酶-逆转录酶(PR-RT)区和整合酶(IN)区被两个单独嵌套的PCR扩增,其次是测序。耐药突变(DRMs)和核苷逆转录酶抑制剂(NRTIs)的耐药性,非核苷逆转录酶抑制剂(NNRTIs),分析了蛋白酶抑制剂(PIs)和整合酶链转移抑制剂(INSTIs)。任何抗逆转录病毒药物的PDR患病率为6.5%[95%CI:4.4-9.1],NRTI的0.9%[95%CI:0.3-2.3],NNRTI的4.1%[95%CI:2.5-6.5],PIs为1.8%[95%CI:0.8-3.6],INSTIs为0.5%[95%CI:0.1-1.8]。根据PR-RT区域的分型结果,发现了11种不同的亚型和31种独特的重组形式(URF)。CRF07_BC是优势亚型(53.7%,233/434),其次是CRF01_AE(25.3%,110/434)。V179D(1.6%)和K103N(1.4%)是最主要的NNRTIDRM类型。Q58E(1.2%)和M184V(0.7%)是最常见的PIDRM和NRTIDRM,分别。在一名患者中发现了与INSTI相关的DRMsY143S(导致对RAL的高水平抗性)和G163K(导致对EVG和RAL的低水平抗性)。鉴于NNRTI的PDR患病率相对较高(4.1%),非基于NNRTI的ART在未来可能是首选。建议在可行的地区开始ART之前包括基因型抗性测试。
    HIV drug resistance compromises the ability of anti-retroviral therapy (ART) to suppress viral replication, resulting in treatment failure. This study investigates the prevalence of pre-treatment drug resistance (PDR) in newly diagnosed individuals in a prosperous city (Wenzhou) in Southeastern China. A cross-sectional investigation was carried out among 473 newly diagnosed ART-naive HIV-1-infected individuals between January and December 2022. The protease-reverse transcriptase (PR-RT) region and integrase (IN) region of HIV-1 were amplified by two separately nested PCRs, followed by sequencing. Drug resistance mutations (DRMs) and drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs) and integrase strand transfer inhibitors (INSTIs) were analyzed. The PDR prevalence was 6.5% [95% CI: 4.4-9.1] for any anti-retroviral drug, 0.9% [95% CI: 0.3-2.3] for NRTIs, 4.1% [95% CI: 2.5-6.5] for NNRTIs, 1.8% [95% CI: 0.8-3.6] for PIs and 0.5% [95% CI: 0.1-1.8] for INSTIs. According to the subtyping results of the PR-RT region, 11 different subtypes and 31 unique recombinant forms (URFs) were found. CRF07_BC was the dominant subtype (53.7%, 233/434), followed by CRF01_AE (25.3%, 110/434). V179D (1.6%) and K103N (1.4%) were the most predominant types of NNRTI DRMs. Q58E (1.2%) and M184V (0.7%) were the most frequent PI DRMs and NRTI DRMs, respectively. The INSTI-related DRMs Y143S (causes high-level resistance to RAL) and G163K (causes low-level resistance to EVG and RAL) were found in one patient each. Given the relatively high PDR prevalence of NNRTI (4.1%), non-NNRTI-based ART may be preferred in the future. It is recommended to include genotypic resistance testing before starting ART in regions where feasible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由严重急性呼吸道综合症冠状病毒2(SARS-CoV-2)引起的2019年冠状病毒病(COVID-19)已经杀死了数百万人,并继续在全球范围内造成严重破坏。这种突然而致命的大流行强调了开发抗病毒药物的必要性,这种药物可以迅速施用以降低发病率,死亡率,和病毒传播。因此,缺乏有效的抗COVID-19治疗,特别是考虑到自SARS-CoV-2爆发以来,漫长的药物开发过程以及与SARS-CoV-2相关的关键死亡工具,药物再利用(或重新定位)构成了迄今为止,减轻病毒传播的理想和现成的最佳方法,包含感染,并降低COVID-19相关死亡率。的确,基于SARS-CoV-2与以前的冠状病毒(CoV)的分子相似性方法,据报道,重新利用的药物会阻碍SARS-CoV-2的复制。因此,了解病毒复制的抑制机制,通过重新利用抗病毒药物和已知阻断CoV和SARS-CoV-2增殖的化学品是至关重要的,它为特定的治疗选择和COVID-19疗法开辟了道路。在这次审查中,我们强调了针对SARS-CoV-2的药物再利用策略的分子基础。值得注意的是,我们讨论了病毒复制的抑制机制,涉及并包括抑制SARS-CoV-2蛋白酶(3C样蛋白酶,3CLpro或木瓜蛋白酶样蛋白酶,PLpro)通过蛋白酶抑制剂,例如Carmofur,Ebselen,和GRL017,聚合酶(RNA依赖性RNA聚合酶,RdRp)通过苏拉明这样的药物,Remdesivir,或者Favipiravir,和蛋白质/肽抑制病毒细胞融合和宿主细胞复制途径,比如双硫仑,GC376和Molnupiravir.如果适用,与已批准临床使用的SARS-CoV抑制剂进行了比较,以提供进一步的见解,以了解抑制SARS-CoV-2复制的分子基础,并为未来的药物发现研究得出结论.
    The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近开发的溶酶体蛋白酶二肽基肽酶1(DPP1)的小分子抑制剂,也称为组织蛋白酶C(CatC),可以通过阻断中性粒细胞丝氨酸蛋白酶(NSPs)的酶原(前)形式的加工来抑制体内化脓性炎症,包括中性粒细胞弹性蛋白酶,蛋白酶3和组织蛋白酶G.DPP1在激活细胞毒性T淋巴细胞(CTL)和自然杀伤(NK)细胞表达的颗粒酶丝氨酸蛋白酶中也起着重要作用。因此,确定DPP1抑制是否也能引起CTL/NK细胞介导的病毒感染或恶性细胞杀伤的脱靶抑制是至关重要的.在这里,我们证明了人类颗粒酶A和B的加工,从酶原过渡到活性蛋白酶,不完全依赖于DPP1。因此,原代人CD8+T细胞对靶细胞的杀伤,NK细胞,而基因工程化的抗CD19CART细胞即使在之前暴露于高浓度的可逆性DPP1抑制剂brensocatib后也未在体外被阻断。与这一观察一致,brensocatib并未显着降低人CTL/NK细胞裂解物中模型颗粒酶A/B肽底物的周转。相比之下,与brensocatib的预孵育几乎完全消除了(>90%)小鼠CD8T细胞的细胞毒性活性和颗粒酶底物周转。总的来说,我们发现,与小鼠相比,DPP1抑制对人细胞毒性淋巴细胞的作用减弱,这表明小鼠和人的颗粒酶加工/激活途径不同.此外,体外数据表明,用可逆DPP1抑制剂治疗的人类受试者,比如Brensocatib,在CTL/NK细胞介导的免疫方面不太可能出现任何明显的缺陷。
    Recently developed small-molecule inhibitors of the lysosomal protease dipeptidyl peptidase 1 (DPP1), also known as cathepsin C (CatC), can suppress suppurative inflammation in vivo by blocking the processing of zymogenic (pro-) forms of neutrophil serine proteases (NSPs), including neutrophil elastase, proteinase 3, and cathepsin G. DPP1 also plays an important role in activating granzyme serine proteases that are expressed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. Therefore, it is critical to determine whether DPP1 inhibition can also cause off-target suppression of CTL/NK-cell-mediated killing of virus-infected or malignant cells. Herein, we demonstrate that the processing of human granzymes A and B, transitioning from zymogen to active proteases, is not solely dependent on DPP1. Thus, the killing of target cells by primary human CD8+ T cells, NK cells, and gene-engineered anti-CD19 CAR T cells was not blocked in vitro even after prior exposure to high concentrations of the reversible DPP1 inhibitor brensocatib. Consistent with this observation, the turnover of model granzyme A/B peptide substrates in the human CTL/NK cell lysates was not significantly reduced by brensocatib. In contrast, preincubation with brensocatib almost entirely abolished (>90%) both the cytotoxic activity of mouse CD8+ T cells and granzyme substrate turnover. Overall, our finding that the effects of DPP1 inhibition on human cytotoxic lymphocytes are attenuated in comparison to those of mice indicates that granzyme processing/activation pathways differ between mice and humans. Moreover, the in vitro data suggest that human subjects treated with reversible DPP1 inhibitors, such as brensocatib, are unlikely to experience any appreciable deficits in CTL/NK-cell-mediated immunities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号