prespacer processing

预起搏器处理
  • 文章类型: Journal Article
    CRISPR-Cas适应性免疫系统从外源DNA摄取短的“间隔区”序列,并将它们整合到宿主基因组中,作为指导干扰未来感染的crRNA的模板。CRISPR系统中的适应是由Cas1-Cas2复合物介导的,该复合物催化前置底物整合到CRISPR阵列中。许多DNA靶向系统还需要Cas4内切核酸酶来获得功能性间隔区。Cas4选择包含原型间隔区相邻基序(PAM)的预封装,并在集成之前删除PAM,这两者都是确保宿主免疫所必需的。Cas1在某些系统中也被证明是一种核酸酶,但是这种核酸酶活性在适应中的作用尚未得到证实。我们鉴定了I-G型Cas4/1融合体,其具有可以直接参与预包装加工的核溶活性Cas1结构域。Cas1结构域既是整合酶,也是不依赖于序列的核酸酶,它能切割预包装的非PAM末端,生成最佳的悬垂长度,从而实现在领导者侧的集成。Cas4结构域序列特异性地切割前pacer的PAM末端,确保PAM端在间隔件侧的集成。这两个域具有不同的金属离子要求。虽然Cas4活性是Mn2+依赖性的,Cas1优先使用Mg2+而不是Mn2+。Cas4/1的双重核酸酶活性消除了在预包装加工中对额外因素的需要,使适应模块自力更生,以适应预起搏器的成熟和定向集成。
    CRISPR-Cas adaptive immune systems uptake short \"spacer\" sequences from foreign DNA and incorporate them into the host genome to serve as templates for CRISPR RNAs that guide interference against future infections. Adaptation in CRISPR systems is mediated by Cas1-Cas2 complexes that catalyze integration of prespacer substrates into the CRISPR array. Many DNA targeting systems also require Cas4 endonucleases for functional spacer acquisition. Cas4 selects prespacers containing a protospacer adjacent motif (PAM) and removes the PAM prior to integration, both of which are required to ensure host immunization. Cas1 has also been shown to function as a nuclease in some systems, but a role for this nuclease activity in adaptation has not been demonstrated. We identified a type I-G Cas4/1 fusion with a nucleolytically active Cas1 domain that can directly participate in prespacer processing. The Cas1 domain is both an integrase and a sequence-independent nuclease that cleaves the non-PAM end of a prespacer, generating optimal overhang lengths that enable integration at the leader side. The Cas4 domain sequence specifically cleaves the PAM end of the prespacer, ensuring integration of the PAM end at the spacer side. The two domains have varying metal ion requirements. While Cas4 activity is Mn2+ dependent, Cas1 preferentially uses Mg2+ over Mn2+. The dual nuclease activity of Cas4/1 eliminates the need for additional factors in prespacer processing making the adaptation module self-reliant for prespacer maturation and directional integration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas系统为细菌提供对病毒的适应性免疫。在隔片自适应期间,Cas1-Cas2复合物选择外源DNA的片段,叫做预起搏器,并将它们以提供功能性免疫的方向整合到CRISPR阵列中。在几种I型CRISPR-Cas系统中,Cas4参与预缩放体的修剪和前间隔区相邻基序(PAM)的裂解,但是在缺乏Cas4的系统中如何处理预起搏器,例如I-E和I-F型系统,不理解。在大肠杆菌中,它有一个I-E型系统,Cas1-Cas2通过对PAM的特定识别,优先选择具有3''悬垂的预封装器,但是在不存在Cas4的情况下,这些预起搏器是如何以功能取向整合的,目前尚不清楚。使用纯化蛋白质的生化方法,以及整合,预起搏器保护,测序,测序和定量PCR检测,我们在这里表明,细菌3'-5'核酸外切酶DnaQ和ExoT可以修剪长长的3'突出部分,并促进正确方向的整合。我们发现通过这些外切核酸酶的修剪会导致不对称的中间体,因为Cas1-Cas2保护PAM序列,这有助于定义间隔物方向。我们的发现暗示大肠杆菌宿主3'-5'核酸外切酶DnaQ和ExoT参与间隔区适应,并揭示了在大肠杆菌中定义间隔区方向的机制。
    CRISPR-Cas systems provide bacteria with adaptive immunity against viruses. During spacer adaptation, the Cas1-Cas2 complex selects fragments of foreign DNA, called prespacers, and integrates them into CRISPR arrays in an orientation that provides functional immunity. Cas4 is involved in both the trimming of prespacers and the cleavage of protospacer adjacent motif (PAM) in several type I CRISPR-Cas systems, but how the prespacers are processed in systems lacking Cas4, such as the type I-E and I-F systems, is not understood. In Escherichia coli, which has a type I-E system, Cas1-Cas2 preferentially selects prespacers with 3\' overhangs via specific recognition of a PAM, but how these prespacers are integrated in a functional orientation in the absence of Cas4 is not known. Using a biochemical approach with purified proteins, as well as integration, prespacer protection, sequencing, and quantitative PCR assays, we show here that the bacterial 3\'-5\' exonucleases DnaQ and ExoT can trim long 3\' overhangs of prespacers and promote integration in the correct orientation. We found that trimming by these exonucleases results in an asymmetric intermediate, because Cas1-Cas2 protects the PAM sequence, which helps to define spacer orientation. Our findings implicate the E. coli host 3\'-5\' exonucleases DnaQ and ExoT in spacer adaptation and reveal a mechanism by which spacer orientation is defined in E. coli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    原核生物利用基于CRISPR-Cas的RNA引导的适应性免疫来抵御移动遗传元件,如噬菌体和质粒。在CRISPR适应期间,这是CRISPR免疫的第一阶段,Cas1-2整合酶复合物捕获入侵者衍生的前pacerDNA,并将其特异性整合在前导-重复连接处作为间隔区.对于这种整合,CRISPR-Cas系统的几种变体使用Cas4作为不可缺少的核酸酶,用于选择性地将含有前置序列的前间隔区相邻基序(PAM)加工至限定的长度。令人惊讶的是,然而,一些CRISPR-Cas系统,例如I-E型,失去了Cas4。尽管没有Cas4,但在I-E型中,预起搏器如何显示出无可挑剔的长度保护和PAM选择仍然很有趣。这里,使用体内和体外整合测定法,深度测序,和外切核酸酶足迹,我们表明Cas1-2/I-E-viaCas1的I-E型特异性延伸的C末端尾对大肠杆菌中含有可变长度的PAM的预起搏器表现出固有的亲和力尽管Cas1-2/I-E不修剪预起搏器,它的结合保护预起搏器边界免受外切核酸酶的作用。这确保通过外切核酸酶将暴露的末端修剪至适当大小的底物,以整合到CRISPR基因座中。总之,我们的工作表明,在一些CRISPR-Cas变体中,例如I-E型,PAM选择的特异性在于Cas1-2,而细胞非Cas核酸外切酶则选择了前pacer加工,从而抵消了对Cas4的需求。
    Prokaryotes deploy CRISPR-Cas-based RNA-guided adaptive immunity to fend off mobile genetic elements such as phages and plasmids. During CRISPR adaptation, which is the first stage of CRISPR immunity, the Cas1-2 integrase complex captures invader-derived prespacer DNA and specifically integrates it at the leader-repeat junction as spacers. For this integration, several variants of CRISPR-Cas systems use Cas4 as an indispensable nuclease for selectively processing the protospacer adjacent motif (PAM) containing prespacers to a defined length. Surprisingly, however, a few CRISPR-Cas systems, such as type I-E, are bereft of Cas4. Despite the absence of Cas4, how the prespacers show impeccable conservation for length and PAM selection in type I-E remains intriguing. Here, using in vivo and in vitro integration assays, deep sequencing, and exonuclease footprinting, we show that Cas1-2/I-E-via the type I-E-specific extended C-terminal tail of Cas1-displays intrinsic affinity for PAM containing prespacers of variable length in Escherichia coli Although Cas1-2/I-E does not prune the prespacers, its binding protects the prespacer boundaries from exonuclease action. This ensures the pruning of exposed ends by exonucleases to aptly sized substrates for integration into the CRISPR locus. In summary, our work reveals that in a few CRISPR-Cas variants, such as type I-E, the specificity of PAM selection resides with Cas1-2, whereas the prespacer processing is co-opted by cellular non-Cas exonucleases, thereby offsetting the need for Cas4.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号