preoptic area of the hypothalamus

下丘脑视前区
  • 文章类型: Journal Article
    快速眼动睡眠(REM)的特征是激活的脑电图(EEG)和肌肉无力,伴随着生动的梦。REM是稳态调节的,确保REM的任何损失由随后的金额增加来补偿。然而,REM稳态控制的神经机制在很大程度上是未知的。这里,我们表明,下丘脑视前区的GABA能神经元(POAGAD2→TMN神经元)对小鼠REM的稳态调节至关重要。POAGAD2→TMN神经元在REM期间最活跃,并抑制它们特异性地减少REM。REM限制导致POAGAD2→TMN神经元中钙瞬变的数量和幅度增加,反映了REM压力的积累。在REM限制过程中抑制POAGAD2→TMN神经元会阻止随后的REM反弹。我们的发现揭示了下丘脑回路,其活动反映了限制过程中稳态REM压力的积累,这是随后REM反弹所必需的。
    Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    社交接触是沟通的重要组成部分。对潜在的途径和机制知之甚少。这里,我们发现了一个新的神经通路,从后膜内丘脑核(PIL)到内侧视前区(MPOA),参与社会修饰的控制。我们发现,雌性大鼠之间的身体接触以及PIL神经元的化学遗传刺激自然激活了PIL和MPOA中的神经元。在经历身体社交接触的大鼠中进行PIL神经元的活动依赖性标记。这些神经元的化学遗传激活增加了熟悉的大鼠之间的社交修饰,PIL-MPOA途径的选择性激活也是如此。从PIL投射到MPOA的神经元表达神经肽甲状旁腺激素2(PTH2),受体拮抗剂的中央注入减少了社会修饰。最后,我们显示了大鼠和人脑之间PIL的解剖组织和MPOA中PTH2受体的分布的相似性。我们建议发现的神经元途径促进与特异性的物理接触。
    Social touch is an essential component of communication. Little is known about the underlying pathways and mechanisms. Here, we discovered a novel neuronal pathway from the posterior intralaminar thalamic nucleus (PIL) to the medial preoptic area (MPOA) involved in the control of social grooming. We found that the neurons in the PIL and MPOA were naturally activated by physical contact between female rats and also by the chemogenetic stimulation of PIL neurons. The activity-dependent tagging of PIL neurons was performed in rats experiencing physical social contact. The chemogenetic activation of these neurons increased social grooming between familiar rats, as did the selective activation of the PIL-MPOA pathway. Neurons projecting from the PIL to the MPOA express the neuropeptide parathyroid hormone 2 (PTH2), and the central infusion of its receptor antagonist diminished social grooming. Finally, we showed a similarity in the anatomical organization of the PIL and the distribution of the PTH2 receptor in the MPOA between the rat and human brain. We propose that the discovered neuronal pathway facilitates physical contact with conspecifics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sleep and body temperature are tightly interconnected in mammals: warming up our body helps to fall asleep and the body temperature in turn drops while falling asleep. The preoptic area of the hypothalamus (POA) serves as an essential brain region to coordinate sleep and body temperature. Understanding how these two behaviors are controlled within the POA requires the molecular identification of the involved circuits and mapping their local and brain-wide connectivity. Here, we review our current understanding of how sleep and body temperature are regulated with a focus on recently discovered sleep- and thermo-regulatory POA neurons. We further discuss unresolved key questions including the anatomical and functional overlap of sleep- and thermo-regulatory neurons, their pathways and the role of various signaling molecules. We suggest that analysis of genetically defined circuits will provide novel insights into the mechanisms underlying the coordinated regulation of sleep and body temperature in health and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Thermoregulation is the maintenance of a relatively constant core body temperature. Humans normally maintain a body temperature at 37°C, and maintenance of this relatively high temperature is critical to human survival. This concept is so important that control of thermoregulation is often the principal example cited when teaching physiological homeostasis. A basic understanding of the processes underpinning temperature regulation is necessary for all undergraduate students studying biology and biology-related disciplines, and a thorough understanding is necessary for those students in clinical training. Our aim in this review is to broadly present the thermoregulatory process taking into account current advances in this area. First, we summarize the basic concepts of thermoregulation and subsequently assess the physiological responses to heat and cold stress, including vasodilation and vasoconstriction, sweating, nonshivering thermogenesis, piloerection, shivering, and altered behavior. Current research is presented concerning the body\'s detection of thermal challenge, peripheral and central thermoregulatory control mechanisms, including brown adipose tissue in adult humans and temperature transduction by the relatively recently discovered transient receptor potential channels. Finally, we present an updated understanding of the neuroanatomic circuitry supporting thermoregulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号