preinitiation complex

  • 文章类型: Journal Article
    大量的工作表明,结构细节,RNA聚合酶II(PolII)启动mRNA基因转录所需的预启动复合物(PIC)机制的组分。然而,人们对体内PIC组装途径及其动力学了解较少,了解这一点对于确定体内RNA合成的速率是至关重要的。我们在出芽酵母中使用竞争ChIP来获得五种一般转录因子(GTF)的停留时间的基因组规模估计:TBP,TFIIA,TFIIB,TFIIE和TFIIF。虽然许多GTF-染色质相互作用是短暂的(<1分钟),有许多相互作用,停留时间在几分钟的范围内。具有共享功能的基因组也共享GTF动力学行为的相似模式。TFIIE,在组装过程后期进入PIC的GTF,停留时间与RNA合成速率相关。这里报道的数据集和结果提供了该生物体中大多数PolII驱动基因的动力学信息,为探索PIC装配之间的机械关系提供了丰富的资源,基因调控,和转录。
    A great deal of work has revealed, in structural detail, the components of the preinitiation complex (PIC) machinery required for initiation of mRNA gene transcription by RNA polymerase II (Pol II). However, less-well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining how rates of in vivo RNA synthesis are established. We used competition ChIP in budding yeast to obtain genome-scale estimates of the residence times for five general transcription factors (GTFs): TBP, TFIIA, TFIIB, TFIIE and TFIIF. While many GTF-chromatin interactions were short-lived ( < 1 min), there were numerous interactions with residence times in the range of several minutes. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism, offering a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    所有生物的发育和生存的核心是基因表达的调节,从RNA聚合酶催化的转录过程开始。在蛋白质编码基因的转录过程中,一般转录因子(GTFs)与RNA聚合酶II(PolII)一起工作,在转录起始位点组装前起始复合物,打开启动子DNA,启动新生信使RNA的合成,过渡到生产性伸长,并最终终止转录。通过这些不同的转录阶段,PolII在其最大亚基的C末端尾部动态磷酸化,作为PolII延伸的控制机制和共转录因子的信号传导/结合平台。参与转录基本步骤的大量核心蛋白因子增加了密集的调控层,这有助于任何给定细胞类型内基因表达的时间和空间控制的复杂性。PolII转录系统在不同水平的真核生物中高度保守;然而,这里的大部分信息将集中在人类PolII系统上。这篇综述走过了转录的各个阶段,从预启动复杂组装到终止,突出参与每个阶段的核心机器的功能和机制。
    Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自从在酵母中发现介体复合物以来,已经过去了30年。我们正在见证突破和进步,这些突破和进步导致了酵母和哺乳动物介体在预起始复合物中的高分辨率结构模型,显示它是如何组装的,以及它如何定位RNA聚合酶II及其C端结构域(CTD)以促进启动转录的CTD磷酸化。这些信息也可用于指导未来植物对介体转录控制机制的研究。这里,我们回顾了我们对植物介体的亚基组成和结构的了解,各个亚基的作用和开创Mediator研究的遗传分析,以及转录因子如何将介体招募到毗邻启动子的调节区域。研究中出现的是调节转录活性并募集激素信号传导模块和组蛋白修饰活性的介体,以建立关闭或开启转录状态,从而募集一般转录因子用于预启动复合物组装。预计植物生物学年度评论的最终在线出版日期,第75卷是2024年5月。请参阅http://www。annualreviews.org/page/journal/pubdates的订正估计数。
    Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核心启动子是基因的转录调节输入被整合以指导预起始复合物(PIC)和RNA聚合酶II(PolII)转录输出的组装的位点。直到现在,核心启动子功能已经通过不同的方法进行了研究,包括PolII转录起始位点映射和不同启动子上PIC的结构表征。这里,我们汇集了这些以前没有联系的观察结果,并假设如何,在后生TATA启动子上,基于转录因子(TF)IID的PIC的精确结构构建导致清晰的转录起始位点(TSS)选择;或者,相比之下,相对于TFIID核心PIC组件,无TATA启动子DNA的较不严格控制的定位如何导致PolII的替代广泛TSS选择。
    Core promoters are sites where transcriptional regulatory inputs of a gene are integrated to direct the assembly of the preinitiation complex (PIC) and RNA polymerase II (Pol II) transcription output. Until now, core promoter functions have been investigated by distinct methods, including Pol II transcription initiation site mappings and structural characterization of PICs on distinct promoters. Here, we bring together these previously unconnected observations and hypothesize how, on metazoan TATA promoters, the precisely structured building up of transcription factor (TF) IID-based PICs results in sharp transcription start site (TSS) selection; or, in contrast, how the less strictly controlled positioning of the TATA-less promoter DNA relative to TFIID-core PIC components results in alternative broad TSS selections by Pol II.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    大量工作在结构上详细揭示了负责mRNA基因转录起始的机制的组成部分。这些包括一般转录因子(GTF),在辅因子和位点特异性转录因子(TF)的活性的帮助下,它们与RNA聚合酶II(PolII)一起在启动子处组装以形成预起始复合物(PIC)。然而,人们对体内PIC组装途径及其动力学了解较少,了解这一点对于在机理水平上确定体内RNA合成的速率如何建立以及辅因子和TFs如何影响它们至关重要。
    我们使用竞争ChIP来获得五个GTF的停留时间的基因组规模估计:TBP,TFIIA,TFIIB,出芽酵母中的TFIIE和TFIIF。虽然许多GTF-染色质相互作用是短暂的(<1分钟),有许多相互作用与停留时间在几分钟的范围内。具有共享功能的基因组也共享GTF动力学行为的相似模式。TFIIE,在组装过程后期进入PIC的GTF,停留时间与RNA合成速率相关。
    此处报告的数据集和结果提供了该生物体中大多数PolII驱动基因的动力学信息,因此为探索PIC组装之间的机制关系提供了丰富的资源,基因调控,和转录。基因功能和GTF动力学之间的关系表明,共享的TF集可调节PIC组装动力学以确保适当的表达水平。
    UNASSIGNED: A great deal of work has revealed in structural detail the components of the machinery responsible for mRNA gene transcription initiation. These include the general transcription factors (GTFs), which assemble at promoters along with RNA Polymerase II (Pol II) to form a preinitiation complex (PIC) aided by the activities of cofactors and site-specific transcription factors (TFs). However, less well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining on a mechanistic level how rates of in vivo RNA synthesis are established and how cofactors and TFs impact them.
    UNASSIGNED: We used competition ChIP to obtain genome-scale estimates of the residence times for five GTFs: TBP, TFIIA, TFIIB, TFIIE and TFIIF in budding yeast. While many GTF-chromatin interactions were short-lived (< 1 min), there were numerous interactions with residence times in the several minutes range. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates.
    UNASSIGNED: The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism and therefore offer a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription. The relationships between gene function and GTF dynamics suggest that shared sets of TFs tune PIC assembly kinetics to ensure appropriate levels of expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:真核核糖体被广泛假定为扫描mRNA的AUG密码子,以严格的5'-3'运动启动翻译(即,严格的单向扫描模型),因此核糖体仅在5'近端AUG密码子处启动翻译(即,第一AUG规则)。
    结果:我们产生了13,437个酵母变体,每个都有一个ATG三联体放置在绿色荧光蛋白的注释ATG(aATG)密码子的下游(dATG)。我们发现框架外的dATG可以抑制aATG的平移,但是随着AATG和DATG之间距离的增加,强度逐渐减小,超过~17nt检测不到。这种现象最好通过核糖体扫描的布朗棘轮机制来解释,其中核糖体使用小幅度5'-3'和3'-5'振荡,净5'-3'移动来扫描AUG密码子,从而导致aAUG和近端dAUG之间的翻译起始竞争。此扫描模型进一步预测,随着uAUG接近aAUG,由框外上游AUG三联体(uAUG)诱导的抑制作用将减少,在这项研究中产生的15,586uATG变体中确实观察到了这一点。计算模拟表明,每个三联体来回扫描大约10次,直到核糖体最终迁移到下游区域。此外,这种扫描过程可能会限制aATG下游序列的进化,以最大程度地减少酵母和人类中近端的框外dATG三联体。
    结论:总的来说,我们的发现揭示了真核核糖体扫描起始密码子的基本过程,以及这个过程如何塑造真核生物基因组进化。
    Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5\'-3\' movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5\' proximal AUG codon (i.e., the first-AUG rule).
    We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5\'-3\' and 3\'-5\' oscillations with a net 5\'-3\' movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans.
    Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人巨细胞病毒(HCMV)立即早期2(IE2)蛋白是一种多功能转录因子,对于裂解性HCMV感染至关重要。IE2作为病毒早期基因的激活剂,负调节自己的启动子,并且是病毒复制所必需的。IE2执行这些不同功能的机制尚未完全理解。使用PRO-Seq,它描述了新生的成绩单,和最近开发的DFF-染色质免疫沉淀(DFF-ChIP;在IP之前通过核酸内切酶DNA片段化因子进行染色质消化)方法解决了占用和局部染色质环境,我们表明IE2在HCMV感染晚期以三种不同的能力控制病毒基因转录,并揭示了IE2与病毒DNA直接结合的机制。IE2通过在其核心启动子区域内结合并阻断预起始复合物(PIC)的组装来抑制病毒启动子的子集。值得注意的是,IE2在主要的立即早期启动子区域形成抑制复合物,涉及IE2与核小体和TBP的直接缔合。IE2通过附近的结合刺激转录,但不在内部,核心启动子区域。此外,IE2充当转录延伸的直接障碍。在一个地点,IE2的这种功能似乎对于剪接的病毒RNA的合成很重要。与观察到的IE2耗竭对宿主基因转录的最小影响一致,IE2在功能上不参与宿主基因组。我们的结果揭示了IE2的转录控制机制,揭示了IE2作为PolII延伸调节剂的先前未知的功能,并证明DFF-ChIP是高分辨率探测转录因子占有率以及转录因子与核小体之间相互作用的有用工具。重要性HCMV感染了世界一半以上的人口,并在其宿主中终生存在。虽然一般无症状,HCMV感染可导致免疫抑制个体的生命威胁疾病。此外,HCMV是美国出生缺陷的主要传染性原因。由于没有有效对抗HCMV的疫苗和抗病毒药物表现出毒性和被HCMV抗性变体破坏,必须探索HCMV中的其他漏洞。这里,我们描述了IE2在晚期HCMV感染期间控制转录的机制。我们证明了IE2在整个HCMV基因组中参与了许多共识位点,并充当激活剂,抑制子,或延伸调节剂,取决于IE2结合位点与PolII起始和延伸复合物相关的背景。我们的发现对IE2作为抗病毒药物靶标的持续探索具有重要意义。
    Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which IE2 executes these distinct functions are incompletely understood. Using PRO-Seq, which profiles nascent transcripts, and a recently developed DFF-chromatin immunoprecipitation (DFF-ChIP; employs chromatin digestion by the endonuclease DNA fragmentation factor prior to IP) approach that resolves occupancy and local chromatin environment, we show that IE2 controls viral gene transcription in three distinct capacities during late HCMV infection and reveal mechanisms that involve direct binding of IE2 to viral DNA. IE2 represses a subset of viral promoters by binding within their core promoter regions and blocking the assembly of preinitiation complexes (PICs). Remarkably, IE2 forms a repressive complex at the major immediate-early promoter region involving direct association of IE2 with nucleosomes and TBP. IE2 stimulates transcription by binding nearby, but not within, core promoter regions. In addition, IE2 functions as a direct roadblock to transcription elongation. At one locus, this function of IE2 appears to be important for the synthesis of a spliced viral RNA. Consistent with the minimal observed effects of IE2 depletion on host gene transcription, IE2 does not functionally engage the host genome. Our results reveal mechanisms of transcriptional control by IE2, uncover a previously unknown function of IE2 as a Pol II elongation modulator, and demonstrate that DFF-ChIP is a useful tool for probing transcription factor occupancy and interactions between transcription factors and nucleosomes at high resolution. IMPORTANCE HCMV infects more than half of the world population and persists lifelong in its hosts. Although generally asymptomatic, HCMV infection can lead to life-threating disease in immunosuppressed individuals. Moreover, HCMV is the leading infectious cause of birth defects in the United States. As there are no vaccines effective against HCMV and antiviral drugs exhibit toxicity and are undermined by resistant HCMV variants, other vulnerabilities in HCMV must be explored. Here, we characterize the mechanism by which IE2 controls transcription during late HCMV infection. We demonstrate that IE2 engages numerous consensus sites across the HCMV genome and functions as an activator, repressor, or elongation modulator depending on the context of IE2 binding sites in relation to Pol II initiation and elongation complexes. Our findings have important implications for the ongoing exploration of IE2 as an antiviral drug target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    低温电子显微镜在揭示整个转录预起始复合物的结构方面取得了前所未有的进展。最近的四项研究为完整描述转录是如何在近原子水平上启动的铺平了道路。
    Cryo-electron microscopy has enabled unprecedented progress in the quest to reveal the structure of the whole transcription preinitiation complex. Four recent studies pave the way for a complete description of how transcription is initiated at near-atomic level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    RNA聚合酶II(PolII)转录真核基因组中的所有蛋白质编码基因和许多非编码RNA。虽然PolII是一个复杂的,12亚基酶,它缺乏启动转录的能力,并且不能通过长DNA序列持续转录。为了执行这些基本功能,一系列蛋白质和蛋白质复合物与PolII相互作用以调节其活性。在这次审查中,我们详细介绍了控制PolII启动的十几个因素的结构和机制(例如,TFIID,TFIH,和调解员),暂停,和伸长率(例如,DSIF,NELF,PAF,和P-TEFb)。PolII转录调控的结构基础在过去十年中迅速发展,主要是由于低温电子显微镜的技术创新。这里,我们总结了大量的结构和功能数据,这些数据使我们对PolII转录机制有了更深入的了解;我们还强调了仍未解决或有争议的机械论问题.
    RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    在合成短的新生RNA后,RNA聚合酶II(polII)解离一般转录因子(GTFs;TFIIA,TFIIB,TBP,TFIIE,TFIIF,和TFIIH)并逃脱启动子,但是这个过程的许多机械细节仍然不清楚。在这里,我们开发了一种来自酿酒酵母的体外转录系统,该系统允许将预起始复合物(PIC)转化为真正的初始转录复合物(ITC),伸长络合物(EC),和重新启动复合物(EC+ITC)。通过生化分离停滞在不同模板位置的起始后复合物,我们已经确定了启动子逃逸的时间和与不同长度RNA相关的蛋白质复合物的组成。当polII相对于转录起始位点停滞在位置27时,几乎所有的起始后复合物都保留了GTF,而大多数复合物在+49停滞时已完成启动子逃逸。这表明GTF与polII的联系比以前预期的长得多。然而,含有RNA和所有GTF的长期持续转录复合物是不稳定的,并且容易受到polII的广泛回溯。加帽酶和/或Spt4/5的添加显着增加了启动子逃逸的频率以及随后的PIC在启动子处的组装以重新引发。这些数据表明延伸因子在启动子逃逸中起重要作用,并且生长的新生RNA将TFIIB从polII的RNA出口通道中排出不足以完成启动子逃逸。
    After synthesis of a short nascent RNA, RNA polymerase II (pol II) dissociates general transcription factors (GTFs; TFIIA, TFIIB, TBP, TFIIE, TFIIF, and TFIIH) and escapes the promoter, but many of the mechanistic details of this process remain unclear. Here we developed an in vitro transcription system from the yeast Saccharomyces cerevisiae that allows conversion of the preinitiation complex (PIC) to bona fide initially transcribing complex (ITC), elongation complex (EC), and reinitiation complex (EC+ITC). By biochemically isolating postinitiation complexes stalled at different template positions, we have determined the timing of promoter escape and the composition of protein complexes associated with different lengths of RNA. Almost all of the postinitiation complexes retained the GTFs when pol II was stalled at position +27 relative to the transcription start site, whereas most complexes had completed promoter escape when stalled at +49. This indicates that GTFs remain associated with pol II much longer than previously expected. Nevertheless, the long-persisting transcription complex containing RNA and all of the GTFs is unstable and is susceptible to extensive backtracking of pol II. Addition of the capping enzyme and/or Spt4/5 significantly increased the frequency of promoter escape as well as assembly of a follow-on PIC at the promoter for reinitiation. These data indicate that elongation factors play an important role in promoter escape and that ejection of TFIIB from the RNA exit tunnel of pol II by the growing nascent RNA is not sufficient to complete promoter escape.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号