preBötzinger complex

preB ö tzinger 复杂
  • 文章类型: Journal Article
    CDKL5缺乏症是一种由CDKL5基因突变引起的罕见遗传性疾病。已报道CDKL5缺乏症患者在清醒时出现中枢呼吸暂停。CDKL5基因敲除小鼠的研究,CDKL5缺乏障碍模型,报告有睡眠呼吸暂停,但目前尚不清楚这些事件是中枢性(中枢性睡眠呼吸暂停)还是阻塞性(阻塞性睡眠呼吸暂停),并且可能与调节呼吸节律的脑回路改变有关.这项研究旨在区分CDKL5基因敲除小鼠的中枢性睡眠呼吸暂停和阻塞性睡眠呼吸暂停。并探索前Bötzinger复合物中表达高水平神经激肽1受体的生长抑素神经元的变化。10只成年雄性野生型和12只CDKL5基因敲除小鼠进行了电极植入,以进行睡眠阶段辨别和膈肌活动记录,并在光照(休息)期间使用全身体积描记术进行了7小时的研究。根据记录的信号,将睡眠呼吸暂停分为中枢性睡眠呼吸暂停或阻塞性睡眠呼吸暂停。通过免疫组织化学在一组动物中评估了preBötzinger复合物中生长抑素神经元的数量及其神经激肽-1受体的表达。CDKL5敲除小鼠在快速眼动睡眠中表现出更高的呼吸暂停发生率和更高的阻塞性睡眠呼吸暂停患病率,与野生型相比,而中枢睡眠呼吸暂停没有观察到显著差异。此外,CDKL5敲除小鼠在preBötzinger复合物中显示生长抑素神经元数量减少,与野生型对照相比,这些神经元表达较低水平的神经激肽-1受体。这些发现强调了CDKL5在调节正常呼吸中的关键作用,提示它可能参与塑造preBötzinger复杂的神经回路和控制睡眠期间的呼吸肌。
    CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    交感神经系统调节动脉血压。患有阻塞性睡眠呼吸暂停(OSA)的个体经历许多夜间低氧发作,并且表现出对心血管系统的交感神经活性升高,导致高血压。这表明OSA破坏了正常的呼吸-交感神经耦合。这项研究调查了吸气后复合物(PiCo)和preBötzinger复合物(preBötC)在控制条件下以及暴露于慢性间歇性缺氧(CIH)21天(5%O2-80回合/天)后在呼吸-交感神经耦合中的作用。腹侧脑干的表面暴露在氨基甲酸乙酯(1.5g/kg)麻醉下,自发呼吸的成年小鼠。胆碱能(ChAT),谷氨酸能(Vglut2),以及在PiCo共表达ChAT和Vglut2的神经元,以及preBötC的Dbx1和Vglut2神经元,在记录隔膜(DIA)的活动时受到光遗传学刺激,迷走神经(cVN),和颈交感神经(cSN)。遵循CIH暴露,基线CSN活动增加,呼吸频率增加,呼气时间减少。在对照小鼠中,刺激PiCo特异性胆碱能-谷氨酸能神经元在呼吸周期的所有阶段引起交感神经爆发,而CIH小鼠胆碱能-谷氨酸能PiCo神经元的光遗传学激活仅在吸气后和呼气后期才增加交感神经活性。在对照组和CIH小鼠的吸气后阶段,刺激谷氨酸能PiCo神经元会增加cSN活性。在对照orCIH条件下,PiCo区域中含有ChAT的神经元的光遗传学刺激不会影响交感神经活动。在控制和CIH条件下,刺激preBötC中的Dbx1或Vglut2神经元引起了灵感和伴随的cSN爆发。一起来看,这些结果表明,PiCo和preBötC有助于呼吸-交感神经耦合,它被CIH改变了,并可能导致OSA患者的高血压。
    The sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling. This study investigates the role of the postinspiratory complex (PiCo) and preBötzinger complex (preBötC) in respiratory-sympathetic coupling under control conditions and following exposure to chronic intermittent hypoxia (CIH) for 21 days (5% O2-80 bouts/day). The surface of the ventral brainstem was exposed in urethane (1.5 g/kg) anesthetized, spontaneously breathing adult mice. Cholinergic (ChAT), glutamatergic (Vglut2), and neurons that co-express ChAT and Vglut2 at PiCo, as well as Dbx1 and Vglut2 neurons at preBötC, were optogenetically stimulated while recording activity from the diaphragm (DIA), vagus nerve (cVN), and cervical sympathetic nerve (cSN). Following CIH exposure, baseline cSN activity increased, breathing frequency increased, and expiratory time decreased. In control mice, stimulating PiCo specific cholinergic-glutamatergic neurons caused a sympathetic burst during all phases of the respiratory cycle, whereas optogenetic activation of cholinergic-glutamatergic PiCo neurons in CIH mice increased sympathetic activity only during postinspiration and late expiration. Stimulation of glutamatergic PiCo neurons increased cSN activity during the postinspiratory phase in control and CIH mice. Optogenetic stimulation of ChAT containing neurons in the PiCo area did not affect sympathetic activity under control or CIH conditions. Stimulating Dbx1 or Vglut2 neurons in preBötC evoked an inspiration and a concomitant cSN burst under control and CIH conditions. Taken together, these results suggest that PiCo and preBötC contribute to respiratory-sympathetic coupling, which is altered by CIH, and may contribute to the hypertension observed in patients with OSA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    pre-Botzinger复合物(preBotC),位于髓质,是呼吸的基本节律生成神经网络。阿片类药物在这个网络上的作用削弱了它产生强大的能力,有节奏的输出,导致危及生命的阿片类药物引起的呼吸抑制(OIRD)。OIRD的发生因个人和内部和外部状态而异,增加使用阿片类药物的风险,然而,这种变异性的机制在很大程度上是未知的。在这项研究中,我们利用preBotC的计算模型进行了一些计算机模拟实验,探索网络拓扑和preBotC神经元的固有特性的差异如何影响网络节奏对阿片类药物的敏感性。我们发现,preBotC网络在计算机上产生的节律对模拟阿片类药物表现出可变的反应,与体外preBotC网络相似。这种可变性主要是由于网络拓扑的随机差异,并且可以通过网络连接和固有神经元属性的强加变化来操纵。我们的结果确定了preBootC网络的特征,这些特征可能会调节其对阿片类药物的敏感性。意义陈述脑干中产生呼吸节律的神经网络被阿片类药物破坏。然而,这种反应出奇的不可预测。通过构建这个节奏生成网络的计算模型,我们说明了个体网络中生物物理特性和连接模式分布的随机差异如何预测它们对阿片类药物的反应,我们展示了这些网络特征的调节如何使呼吸更容易受到阿片类药物的影响或抵抗。
    The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    唤醒水平的变化可以影响呼吸模式。呼吸行为影响唤醒状态的机制尚未完全了解。在这项研究中,我们研究了星形胶质细胞在前Bötzinger复合物(preBötC)中通过成年清醒大鼠的呼吸调节唤醒状态的作用。使用病毒载体工具,我们选择性地干扰了前BötC中的星形细胞信号。星形细胞信号传导受到抑制的大鼠表现出较慢的呼吸频率和表现出平静状态的行为,而前BötC星形胶质细胞中嘌呤能信号的增强导致更快的呼吸和增强的唤醒。我们的发现揭示了星形胶质细胞介导的机制在前BötC中的关键作用,该机制影响呼吸行为和高级脑功能,如唤醒,表明呼吸行为和精神状态之间存在双向联系。
    Variations in arousal levels can impact respiratory patterns. The mechanisms by which breathing behaviors can influence arousal state is not fully understood. In this study, we investigated the role of astrocytes in the preBötzinger complex (preBötC) in modulating arousal states via breathing in adult conscious rats. Using viral vector tools, we selectively interfered with astrocytic signaling in the preBötC. Rats with inhibited astrocytic signaling exhibited slower breathing rates and behaviors indicative of a calmer state, whereas enhanced purinergic signaling in preBötC astrocytes led to faster breathing and heightened arousal. Our findings reveal a key role for an astrocyte-mediated mechanism in the preBötC that influences both respiratory behaviors and higher-order brain functions like arousal, suggesting a bidirectional link between breathing behaviors and mental states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    preBötzinger情结(preBötC)如何产生呼吸仍然分为两个意识形态框架,持续的钠电流(INaP)是这场辩论的核心。虽然我NaP被广泛表达,起搏器假说认为它是必要的,因为它赋予一小部分神经元内在爆发或"起搏器"活动.相比之下,Burstlet理论认为INaP是可有可无的,因为节奏是由前馈网络相互作用驱动的“吸气前”尖峰活动产生的。使用计算建模,我们发现穗形状的变化可以使INaP与内在破裂分离。与许多实验基准一致,在模拟氧合变化过程中对尖峰形状的条件效应,发展,细胞外钾,温度会改变内在爆裂和吸气前尖峰的患病率,而不会改变INaP的作用。我们的结果支持一个统一的假设,即INaP和兴奋性网络相互作用,但不是内在的爆裂或吸气前的尖峰,是preBötC节律发生的关键相互依存特征。
    结论:呼吸是源于preBötzinger情结的一个重要的有节奏的过程。自1991年被发现以来,关于呼吸节律的产生是作为网络属性出现还是由具有节律爆发能力的特定神经元子集驱动的,一直存在激烈的争论。由固有电流赋予。这里,使用计算建模,我们提出了一个统一的数据驱动的呼吸节律生成模型,该模型弥合了这些竞争理论之间的鸿沟。在这个模型中,固有的细胞特性(持续的钠电流)和网络特性(循环激发),但不是内在的爆发,是呼吸节律产生的基本和相互依存的特征。
    How breathing is generated by the preBötzinger Complex (preBötC) remains divided between two ideological frameworks, and the persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or \"pacemaker\" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from \"pre-inspiratory\" spiking activity driven by feed-forward network interactions. Using computational modeling, we discover that changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and pre-inspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or pre-inspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    唤醒水平的变化可以影响呼吸模式。然而,呼吸行为的变化是否会影响唤醒状态还没有完全了解。在这项研究中,我们研究了星形胶质细胞在前Bötzinger复合物(preBötC)中通过成年清醒大鼠的呼吸调节唤醒状态的作用。使用病毒载体工具,我们选择性地干扰了前BötC中的星形细胞信号。星形细胞信号传导受到抑制的大鼠表现出较慢的呼吸频率和表现出平静状态的行为,而前BötC星形胶质细胞中嘌呤能信号的增强导致更快的呼吸和增强的唤醒。我们的发现揭示了星形胶质细胞介导的机制在前BötC中的关键作用,该机制影响呼吸行为和高级脑功能,如唤醒,表明呼吸行为和精神状态之间存在双向联系。
    Variations in arousal levels can impact respiratory patterns. However, whether changes in breathing behaviors can influence arousal state is not fully understood. In this study, we investigated the role of astrocytes in the preBötzinger complex (preBötC) in modulating arousal states via breathing in adult conscious rats. Using viral vector tools, we selectively interfered with astrocytic signaling in the preBötC. Rats with inhibited astrocytic signaling exhibited slower breathing rates and behaviors indicative of a calmer state, whereas enhanced purinergic signaling in preBötC astrocytes led to faster breathing and heightened arousal. Our findings reveal a key role for astrocyte-mediated mechanism in the preBötC that influences both respiratory behaviors and higher-order brain functions like arousal, suggesting a bidirectional link between breathing behaviors and mental states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    当前的呼吸CO2化学敏感性模型集中在位于延髓后梯形核(RTN)中的特定神经元群的功能上。然而,有大量证据表明,其他脑干区域存在化学敏感神经元,包括延髓的节奏产生区域-preBötzinger复合体(preBötC)。也有证据表明星形胶质细胞,非神经元脑细胞,有助于中央CO2化学敏感性。在这项研究中,我们重新评估了RTN神经元的相对贡献,前BötC星形胶质细胞,和颈动脉体化学感受器在介导实验动物(成年实验室大鼠)对CO2的呼吸反应中。为了通过胞吐释放递质来阻断星形胶质信号,将preBötC星形胶质细胞靶向表达破伤风毒素轻链(TeLC)。TeLC在前BötC星形胶质细胞中的双边表达与清醒和麻醉动物对CO2的呼吸反应的20%和30%减少有关,分别。颈动脉体去神经使CO2呼吸反应降低了约25%。通过应用氯氮平-N-氧化物,双侧抑制被转导以表达由设计药物(DREADDGi)专门激活的Gi偶联设计受体的RTN神经元,使清醒和麻醉大鼠的CO2反应降低了约20%和约40%,分别。前BötC中星形胶质细胞信号的联合阻断,抑制RTN神经元和颈动脉体去神经使CO2诱导的呼吸反应降低约70%。这些数据进一步支持以下假设:CO2敏感的呼吸驱动需要来自外周化学感受器和若干中枢化学感受器位点的输入。在preBötC级别,星形胶质细胞调节响应CO2的呼吸网络的活动,通过中继化学感应信息(即它们充当CO2传感器)或通过增强preBötC网络对化学感应输入的兴奋性。关键点:这项研究重新评估了颈动脉体所扮演的角色,前BötC的后梯形核(RTN)和星形胶质细胞介导CO2敏感的呼吸驱动。获得的数据表明,preBötC星形胶质信号的破坏,阻断来自外周化学感受器的输入或抑制RTN神经元类似地降低了对高碳酸血症的呼吸反应。这些数据为以下假设提供了进一步的支持:CO2敏感的呼吸驱动是由外周化学感受器和几个中央化学感受器位点的输入介导的。
    Current models of respiratory CO2 chemosensitivity are centred around the function of a specific population of neurons residing in the medullary retrotrapezoid nucleus (RTN). However, there is significant evidence suggesting that chemosensitive neurons exist in other brainstem areas, including the rhythm-generating region of the medulla oblongata - the preBötzinger complex (preBötC). There is also evidence that astrocytes, non-neuronal brain cells, contribute to central CO2 chemosensitivity. In this study, we reevaluated the relative contributions of the RTN neurons, the preBötC astrocytes, and the carotid body chemoreceptors in mediating the respiratory responses to CO2 in experimental animals (adult laboratory rats). To block astroglial signalling via exocytotic release of transmitters, preBötC astrocytes were targeted to express the tetanus toxin light chain (TeLC). Bilateral expression of TeLC in preBötC astrocytes was associated with ∼20% and ∼30% reduction of the respiratory response to CO2 in conscious and anaesthetized animals, respectively. Carotid body denervation reduced the CO2 respiratory response by ∼25%. Bilateral inhibition of RTN neurons transduced to express Gi-coupled designer receptors exclusively activated by designer drug (DREADDGi ) by application of clozapine-N-oxide reduced the CO2 response by ∼20% and ∼40% in conscious and anaesthetized rats, respectively. Combined blockade of astroglial signalling in the preBötC, inhibition of RTN neurons and carotid body denervation reduced the CO2 -induced respiratory response by ∼70%. These data further support the hypothesis that the CO2 -sensitive drive to breathe requires inputs from the peripheral chemoreceptors and several central chemoreceptor sites. At the preBötC level, astrocytes modulate the activity of the respiratory network in response to CO2 , either by relaying chemosensory information (i.e. they act as CO2  sensors) or by enhancing the preBötC network excitability to chemosensory inputs. KEY POINTS: This study reevaluated the roles played by the carotid bodies, neurons of the retrotrapezoid nucleus (RTN) and astrocytes of the preBötC in mediating the CO2 -sensitive drive to breathe. The data obtained show that disruption of preBötC astroglial signalling, blockade of inputs from the peripheral chemoreceptors or inhibition of RTN neurons similarly reduce the respiratory response to hypercapnia. These data provide further support for the hypothesis that the CO2 -sensitive drive to breathe is mediated by the inputs from the peripheral chemoreceptors and several central chemoreceptor sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    简介:使用选择性的体内研究,局部阿片类药物拮抗剂注射或局部阿片类药物受体缺失已经确定,全身性阿片类药物通过多个呼吸相关脑干区域的效应,剂量依赖性地抑制呼吸输出量.方法:经ZablockiVA医学中心动物研究小组委员会批准,实验在53个去脊椎动物中进行,迷走神经切断术,等中毒高氧时,任一性别的机械通气犬。我们在Pontine呼吸组(PRG,n=432)和preBötzinger/Bötzinger复杂区域(preBötC/BötC,n=213)在静脉输注瑞芬太尼(0.1-1mcg/kg/min)之前和期间,然后直到完全恢复the神经活动。使用广义线性混合模型来确定瑞芬太尼引起的Fn变化以及瑞芬太尼引起的Fn变化与吸气和呼气持续时间变化以及峰值膈活动之间的统计关联。通过对动物的随机效应控制分析,run,和神经元类型。结果:瑞芬太尼降低了前BötC/BötC以及吸气(I)中大多数神经元亚型的Fn,吸气-呼气,PRG中的呼气(E)衰减和非呼吸调节神经元。PRG吸气和非呼吸调节的神经元活动的减少与吸气持续时间的增加有关。在preBötC,随着吸气持续时间的增加,I-递减神经元活性的降低与呼气和E-递减活性的增加相关.相比之下,I增强神经元活动的减少与吸气持续时间的减少有关。讨论:虽然统计关联不一定意味着因果关系,我们的数据提示了阿片样物质引起的PRG和preBötC/BötC呼气持续时间增加的机制,以及高剂量阿片样物质引起的吸气衰竭可能是由于preBötC/BötC吸气前神经元的活性降低和吸气前斜坡样活动的斜率降低以及preBötC/BötCI增强神经元的抑制引起的.其他研究必须阐明观察到的神经元活动变化是否是由于直接的神经元抑制或减少的兴奋性输入。
    Introduction: In vivo studies using selective, localized opioid antagonist injections or localized opioid receptor deletion have identified that systemic opioids dose-dependently depress respiratory output through effects in multiple respiratory-related brainstem areas. Methods: With approval of the subcommittee on animal studies of the Zablocki VA Medical Center, experiments were performed in 53 decerebrate, vagotomized, mechanically ventilated dogs of either sex during isocapnic hyperoxia. We performed single neuron recordings in the Pontine Respiratory Group (PRG, n = 432) and preBötzinger/Bötzinger complex region (preBötC/BötC, n = 213) before and during intravenous remifentanil infusion (0.1-1 mcg/kg/min) and then until complete recovery of phrenic nerve activity. A generalized linear mixed model was used to determine changes in Fn with remifentanil and the statistical association between remifentanil-induced changes in Fn and changes in inspiratory and expiratory duration and peak phrenic activity. Analysis was controlled via random effects for animal, run, and neuron type. Results: Remifentanil decreased Fn in most neuron subtypes in the preBötC/BötC as well as in inspiratory (I), inspiratory-expiratory, expiratory (E) decrementing and non-respiratory modulated neurons in the PRG. The decrease in PRG inspiratory and non-respiratory modulated neuronal activity was associated with an increase in inspiratory duration. In the preBötC, the decrease in I-decrementing neuron activity was associated with an increase in expiratory and of E-decrementing activity with an increase in inspiratory duration. In contrast, decreased activity of I-augmenting neurons was associated with a decrease in inspiratory duration. Discussion: While statistical associations do not necessarily imply a causal relationship, our data suggest mechanisms for the opioid-induced increase in expiratory duration in the PRG and preBötC/BötC and how inspiratory failure at high opioid doses may result from a decrease in activity and decrease in slope of the pre-inspiratory ramp-like activity in preBötC/BötC pre-inspiratory neurons combined with a depression of preBötC/BötC I-augmenting neurons. Additional studies must clarify whether the observed changes in neuronal activity are due to direct neuronal inhibition or decreased excitatory inputs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在preBötzinger复合体(preBötC)中产生节律性吸气活动,位于延髓腹外侧两侧的神经元网络。胆碱能神经传递影响呼吸节律性神经元和前BötC中的抑制性甘氨酸能神经元。鉴于胆碱能纤维和受体在前BötC中存在并起作用,因此对乙酰胆碱进行了广泛的研究,在睡眠/觉醒循环中很重要,并通过其对preBötC神经元的作用来调节吸气频率。尽管它在调节吸气节律中起作用,前BötC的乙酰胆碱输入来源尚不清楚。在本研究中,我们在表达由胆碱乙酰转移酶启动子驱动的Cre重组酶的转基因小鼠中使用了逆行和顺行病毒示踪方法,以鉴定前BötC的胆碱能输入来源.令人惊讶的是,我们观察到的很少,如果有的话,胆碱能投射源自后背和足桥脑被盖核(LDT/PPT),两种主要的胆碱能,长期假设状态依赖性系统是前BötC胆碱能输入的主要来源。相反,我们在PPT/LDT中鉴定了谷氨酸能和GABA能/甘氨酸能的神经元,这些神经元将投影发送到preBötC。尽管这些神经元对preBötC神经元的直接胆碱能调节的贡献最小,它们可能参与呼吸的状态依赖性调节。我们的数据还表明,前BötC的胆碱能输入来源似乎起源于延髓相邻区域的胆碱能神经元,中间网状结构,外侧的甲状旁腺细胞,和孤束核。
    Rhythmic inspiratory activity is generated in the preBötzinger complex (preBötC), a neuronal network located bilaterally in the ventrolateral medulla. Cholinergic neurotransmission affects respiratory rhythmogenic neurons and inhibitory glycinergic neurons in the preBötC. Acetylcholine has been extensively investigated given that cholinergic fibers and receptors are present and functional in the preBötC, are important in sleep/wake cycling, and modulate inspiratory frequency through its action on preBötC neurons. Despite its role in modulating inspiratory rhythm, the source of acetylcholine input to the preBötC is not known. In the present study, we used retrograde and anterograde viral tracing approaches in transgenic mice expressing Cre-recombinase driven by the choline acetyltransferase promoter to identify the source of cholinergic inputs to the preBötC. Surprisingly, we observed very few, if any, cholinergic projections originating from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT), two main cholinergic, state-dependent systems long hypothesized as the main source of cholinergic inputs to the preBötC. On the contrary, we identified glutamatergic and GABAergic/glycinergic neurons in the PPT/LDT that send projections to the preBötC. Although these neurons contribute minimally to the direct cholinergic modulation of preBötC neurons, they could be involved in state-dependent regulation of breathing. Our data also suggest that the source of cholinergic inputs to the preBötC appears to originate from cholinergic neurons in neighboring regions of the medulla, the intermediate reticular formation, the lateral paragigantocellularis, and the nucleus of the solitary tract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号