potassium‐ion batteries

钾离子电池
  • 文章类型: Journal Article
    碳质材料由于其低成本而在K离子电池中具有广阔的前景,可调层间间距,和高电子电导率。然而,窄的层间间距显著限制了它们的储钾能力。在这里,分层N,S与超高吡啶/吡咯N(90.6at。%)和通过微爆炸辅助热剥离氧化石墨烯(GO)制备了较大的层间间距(0.423nm)。揭示了GO微爆炸剥落的潜在机理。NSEHG电极提供了显着的可逆容量(621mAhg-1,0.05Ag-1),出色的倍率性能(10Ag-1时为155mAhg-1),和强大的循环稳定性(在5Ag-1下进行4400次循环后,每个循环衰减为0.005%),超过了以前报道的大多数K离子电池中的石墨烯阳极。此外,NSEHG电极作为Li-/Na-离子电池的阳极表现出令人鼓舞的性能。此外,组装的活性炭||NSEHG钾离子混合电容器可提供令人印象深刻的141Whkg-1的能量密度和稳定的循环性能,在1Ag-1下进行4000次循环后,电容保持率为96.1%。这项工作可以为碱金属离子电池的高性能石墨烯阳极的设计和可扩展制造提供有用的基本见解。
    Carbonaceous materials hold great promise for K-ion batteries due to their low cost, adjustable interlayer spacing, and high electronic conductivity. Nevertheless, the narrow interlayer spacing significantly restricts their potassium storage ability. Herein, hierarchical N, S co-doped exfoliated holey graphene (NSEHG) with ultrahigh pyridinic/pyrrolic N (90.6 at.%) and large interlayer spacing (0.423 nm) is prepared through micro-explosion assisted thermal exfoliation of graphene oxide (GO). The underlying mechanism of the micro-explosive exfoliation of GO is revealed. The NSEHG electrode delivers a remarkable reversible capacity (621 mAh g-1 at 0.05 A g-1), outstanding rate capability (155 mAh g-1 at 10 A g-1), and robust cyclic stability (0.005% decay per cycle after 4400 cycles at 5 A g-1), exceeding most of the previously reported graphene anodes in K-ion batteries. In addition, the NSEHG electrode exhibits encouraging performances as anodes for Li-/Na-ion batteries. Furthermore, the assembled activated carbon||NSEHG potassium-ion hybrid capacitor can deliver an impressive energy density of 141 Wh kg-1 and stable cycling performance with 96.1% capacitance retention after 4000 cycles at 1 A g-1. This work can offer helpful fundamental insights into design and scalable fabrication of high-performance graphene anodes for alkali metal ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    成本效益在可充电电池的可持续运行中起着决定性作用。因此,钠离子电池(SIB)和钾离子电池(PIBs)的低成本消耗基于其资源丰富和先进的电化学性能,为“SIB/PIBs如何取代锂离子电池(LIBs)同行提供了一个有希望的方向。从单位能源成本的角度,将SIB/PIB技术合理化为LIB的替代品,这篇评论给出了在可能的电极价格等级和各种电池寿命水平下它们的能量密度的具体标准。SIB/PIB的成本($kWh-1cycle-1)优势是通过廉价的原材料补偿循环性能不足以及与LIB的能量密度差距来确定的。此外,SIB和PIB之间的成本比较,特别是每千瓦时和每周期的成本,也参与其中。这篇评论明确表明,SIB的实用性和成本效益优于PIB,PIB的商业化迄今为止受到低能量密度的阻碍。即便如此,PIB可持续性的巨大潜力,要优于SIB,随着主流储能技术的揭示,只要PIB实现长循环寿命或增强能量密度,相关展望将作为商业应用的下一个发展方向。
    Cost-effectiveness plays a decisive role in sustainable operating of rechargeable batteries. As such, the low cost-consumption of sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) provides a promising direction for \"how do SIBs/PIBs replace Li-ion batteries (LIBs) counterparts\" based on their resource abundance and advanced electrochemical performance. To rationalize the SIBs/PIBs technologies as alternatives to LIBs from the unit energy cost perspective, this review gives the specific criteria for their energy density at possible electrode-price grades and various battery-longevity levels. The cost ($ kWh-1 cycle-1) advantage of SIBs/PIBs is ascertained by the cheap raw-material compensation for the cycle performance deficiency and the energy density gap with LIBs. Furthermore, the cost comparison between SIBs and PIBs, especially on cost per kWh and per cycle, is also involved. This review explicitly manifests the practicability and cost-effectiveness toward SIBs are superior to PIBs whose commercialization has so far been hindered by low energy density. Even so, the huge potential on sustainability of PIBs, to outperform SIBs, as the mainstream energy storage technology is revealed as long as PIBs achieve long cycle life or enhanced energy density, the related outlook of which is proceeded as the next development directions for commercial applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    共价三嗪骨架(CTFs)是有前途的电池电极,由于其可设计的官能团,可调孔径,和非凡的稳定性。然而,由于难以建立稳定的离子吸附/解吸位点,因此它们的实际使用受到限制。在这项研究中,利用熔融三氯铁(FeCl3)的熔融盐剥离工艺用于分层氟化共价三嗪骨架(FCTF)的层堆叠结构并产生铁基离子存储活性位点。此过程增加了层间间距并均匀地沉积了含铁材料,增强电子和离子传输。所得的熔融FeCl3剥离的FCTF(Fe@FCTF)作为钾离子电池显示出优异的性能,在0.1Ag-1时具有447mAhg-1的高容量,在1.6Ag-1时具有257mAhg-1和良好的循环稳定性。值得注意的是,熔盐剥离在改善CTF的Na+和Li+储存性能方面也是有效的。提出了K/Na/Li与C=N官能团螯合的逐步反应机理,并通过原位X射线衍射测试(XRD)进行了验证。非原位X射线光电子能谱(XPS),和理论计算,说明吡嗪和铁配位基团在与K/Na/Li阳离子反应中起主要作用。这些结果得出结论,Fe@FCTF是钾离子电池(PIBs)的合适阳极材料,钠离子电池(SIB),和锂离子电池(LIBs)。
    Covalent triazine frameworks (CTFs) are promising battery electrodes owing to their designable functional groups, tunable pore sizes, and exceptional stability. However, their practical use is limited because of the difficulty in establishing stable ion adsorption/desorption sites. In this study, a melt-salt-stripping process utilizing molten trichloro iron (FeCl3) is used to delaminate the layer-stacked structure of fluorinated covalent triazine framework (FCTF) and generate iron-based ion storage active sites. This process increases the interlayer spacing and uniformly deposits iron-containing materials, enhancing electron and ion transport. The resultant melt-FeCl3-stripped FCTF (Fe@FCTF) shows excellent performance as a potassium ion battery with a high capacity of 447 mAh g-1 at 0.1 A g-1 and 257 mAh g-1 at 1.6 A g-1 and good cycling stability. Notably, molten-salt stripping is also effective in improving the CTF\'s Na+ and Li+ storage properties. A stepwise reaction mechanism of K/Na/Li chelation with C═N functional groups is proposed and verified by in situ X-ray diffraction testing (XRD), ex-situ X-ray photoelectron spectroscopy (XPS), and theoretical calculations, illustrating that pyrazines and iron coordination groups play the main roles in reacting with K+/Na+/Li+ cations. These results conclude that the Fe@FCTF is a suitable anode material for potassium-ion batteries (PIBs), sodium-ion batteries (SIBs), and lithium-ion batteries (LIBs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钾离子电池(KIBs)可以提供高能量密度,可循环性,和操作安全,同时由于钾的自然丰富而经济。利用石墨作为阳极,合适的阴极可以实现全电池。寻找潜在的阴极,这项工作介绍了P3型K0.5Ni1/3Mn2/3O2层状氧化物作为通过简单的固态方法合成的潜在候选物。该材料用作3.2V阴极,将高电压下的Ni氧化还原和低电压下的Mn氧化还原相结合,并且在环境温度和升高的(40-50°C)温度下表现出高度可逆的K离子(de)插入。第一性原理计算表明,MO2板中的基态面内Mn-Ni有序与框架中的K含量密切相关。导致K0.5Ni1/3Mn2/3O2中Ni-Mn的交织和替代排序。事后分析和电化学滴定揭示了K(去)插入过程中固溶体机理的发生。研究结果表明,添加Ni可以有效地调节阴极的电子和结构性能,导致改进的电化学性能。这项工作为寻求开发潜在的低成本无CoKIB阴极以用于固定储能的实际应用提供了新的见解。
    Potassium-ion batteries (KIBs) can offer high energy density, cyclability, and operational safety while being economical due to the natural abundance of potassium. Utilizing graphite as an anode, suitable cathodes can realize full cells. Searching for potential cathodes, this work introduces P3-type K0.5Ni1/3Mn2/3O2 layered oxide as a potential candidate synthesized by a simple solid-state method. The material works as a 3.2 V cathode combining Ni redox at high voltage and Mn redox at low voltage and exhibits highly reversible K+ ion (de)insertion at ambient and elevated (40-50 °C) temperatures. First-principles calculations suggest the ground state in-plane Mn-Ni ordering in the MO2 sheets is strongly correlated to the K-content in the framework, leading to an interwoven and alternative row ordering of Ni-Mn in K0.5Ni1/3Mn2/3O2. Postmortem and electrochemical titration reveal the occurrence of a solid solution mechanism during K+ (de)insertion. The findings suggest that the Ni addition can effectively tune the electronic and structural properties of the cathode, leading to improved electrochemical performance. This work provides new insights in the quest to develop potential low-cost Co-free KIB cathodes for practical applications in stationary energy storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阴极-电解质中间相(CEI)对于可充电电池的可逆性至关重要,然而,与固体电解质界面(SEI)相比,受到的关注较少。普遍的弱溶剂化电解质通常是从获得稳健的SEI的立场提出的,然而,由此产生的弱离子-溶剂相互作用产生过多的游离溶剂,并形成具有高动力学势垒的厚CEI,这对于在高工作电压下的界面稳定性是不利的。在这里,我们报告了一种高度溶剂化的电解质,通过产生稳定的三元络合物来固定游离溶剂,并促进均相和超薄CEI的生长,以提高钾离子电池(PIBs)的电化学性能。通过飞行时间二次离子质谱和低温透射电子显微镜,我们发现,故意配位的络合物是形成机械稳定且富含无机物的CEI的关键,该CEI具有高性能PIB的优异扩散动力学。与K0.5MnO2阴极和软碳(SC)阳极耦合,我们在SC||K0.5MnO2全电池中实现了高能量密度(202.3Whkg-1),并具有出色的循环寿命(500次循环后的92.5%容量保留率),为PIB设定新的性能基准。本文受版权保护。保留所有权利。
    Cathode-electrolyte interphase (CEI) is crucial for the reversibility of rechargeable batteries, yet receives less attention compared to solid-electrolyte interphase (SEI). The prevalent weakly-solvating electrolyte is usually proposed from the standing point of obtaining robust SEI, however, the resultant weak ion-solvent interaction gives rise to excessive free solvents and forms thick CEI with high kinetic barriers, which is disadvantageous for interfacial stability at the high working voltage. Herein, a highly-solvating electrolyte is reported to immobilize free solvents by generating stable ternary complexes and facilitate the growth of homogeneous and ultrathin CEI to boost the electrochemical performances of potassium-ion batteries (PIBs). Through time-of-flight secondary ion mass spectrometry and cryogenic transmission electron microscopy, It is revealed that the deliberately coordinated complexes are the key to forming mechanically stable and inorganic-rich CEI with superior diffusion kinetics for high-performing PIBs. Coupling with a K0.5MnO2 cathode and a soft carbon (SC) anode, a high energy density (202.3 Wh kg-1) is achieved with an exceptional cycle lifespan (92.5% capacity retention after 500 cycles) in a SC||K0.5MnO2 full cell, setting new performance benchmarks for PIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    工程化富FSEI层被认为是实现钾离子电池(KIBs)的长期循环稳定性的有效策略。然而,在传统的KPF6碳酸盐电解质中,由于KPF6不能分解成KxF,所以形成含F的SEI层具有挑战性。在这里,AlCl3用作新型添加剂以改变KPF6碳酸盐电解质的化学环境。首先,由于Al3+的电荷半径比较大,电解质中的含Al基团可以容易地从PF6-捕获F并加速SEI层中KxF的形成。此外,AlCl3还与电解质中的痕量H2O或溶剂反应以形成Al2O3,其可进一步充当HF清除剂。富FSEI层(KxF和AlF3)的“自诱导形成”和意外物种(H2O和HF)的“自消除”保证了KIB的出色长期循环稳定性。在将AlCl3掺入常规KPF6碳酸盐电解质中时,硬碳(HC)阳极具有10000次循环的超长寿命,库仑效率高达100%。当与PTCDA结合时,全电池在360次循环后表现出81%的高容量保留-显著优于使用常规电解质的电池。此外,使用添加了AlCl3的KPF6电解质的PTCDA||HC袋式电池在80次循环后提供了93mAhg-1的可逆容量,容量保留率为86%。这项研究为推进电解质工程,开发适合大规模储能应用的耐用电池开辟了新途径。本文受版权保护。保留所有权利。
    Engineering F-rich solid electrolyte interphase (SEI) layers is regarded as an effective strategy to enable the long-term cycling stability of potassium-ion batteries (KIBs). However, in the conventional KPF6 carbonate electrolytes, it is challenging to form F-containing SEI layers due to the inability of KPF6 to decompose into KxF. Herein, AlCl3 is employed as a novel additive to change the chemical environment of the KPF6 carbonate electrolyte. First, due to the large charge-to-radius ratio of Al3+, the Al-containing groups in the electrolyte can easily capture F from PF6 - and accelerate the formation of KxF in SEI layer. In addition, AlCl3 also reacts with trace H2O or solvents in the electrolytes to form Al2O3, which can further act as a HF scavenger. Upon incorporating AlCl3 into conventional KPF6 carbonate electrolyte, the hard carbon (HC) anode exhibits an ultra-long lifespan of 10000 cycles with a high coulombic efficiency of ≈100%. When coupled with perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), the full cell exhibits a high capacity retention of 81% after 360 cycles-significantly outperforming cells using conventional electrolytes. This research paves new avenues for advancing electrolyte engineering towards developing durable batteries tailored for large-scale energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳质材料被认为是钾离子电池(PIBs)最有前途的阳极之一,但是它们的速率能力在很大程度上受到阳极内部缓慢的固态钾扩散动力学和缓慢的界面钾离子转移过程的限制。在这里,通过容易的拓扑缺陷调节碳阳极的微观结构,已经证明了高速率和高容量的PIB。获得的具有丰富拓扑缺陷的多孔碳纳米片(TDPCNSs)的碳晶格保持高钾吸附能,但钾迁移势垒低,从而能够在石墨层内有效地储存和扩散钾。此外,拓扑缺陷可以诱导阴离子的优先分解,导致形成高钾离子导电固体电解质界面(SEI)膜,钾离子去溶剂化和转移屏障降低。此外,TDPCNSs的主要sp2杂化碳共轭骨架可实现高电导率(39.4Scm-1)和相对较低的钾储存电位。因此,构造完成的TDPCNSs阳极显示出高钾储存能力(0.1Ag-1时为504mAhg-1),显着的倍率能力(118mAhg-1,40Ag-1)以及长期循环稳定性。本文受版权保护。保留所有权利。
    Carbonaceous materials are regarded as one of the most promising anodes for potassium-ion batteries (PIBs), but their rate capabilities are largely limited by the slow solid-state potassium diffusion kinetics inside anode and sluggish interfacial potassium ion transfer process. Herein, high-rate and high-capacity PIBs are demonstrated by facile topological defect-regulation of the microstructure of carbon anodes. The carbon lattice of the as-obtained porous carbon nanosheets (CNSs) with abundant topological defects (TDPCNSs) holds relatively high potassium adsorption energy yet low potassium migration barrier, thereby enabling efficient storage and diffusion of potassium inside graphitic layers. Moreover, the topological defects can induce preferential decomposition of anions, leading to the formation of high potassium ion conductive solid electrolyte interphase (SEI) film with decreased potassium ion de-solvation and transfer barrier. Additionally, the dominant sp2-hybridized carbon conjugated skeleton of TDPCNSs enables high electrical conductivity (39.4 S cm-1) and relatively low potassium storage potential. As a result, the as-constructed TDPCNSs anode demonstrates high potassium storage capacity (504 mA h g-1 at 0.1 A g-1), remarkable rate capability (118 mA h g-1 at 40 A g-1), as well as long-term cycling stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    构建多孔结构被认为是改善钾离子电池(PIBs)碳阳极电化学性能的有吸引力的策略。然而,电化学储钾性能与孔隙结构之间的相关性尚未得到很好的阐明,这阻碍了高性能碳阳极的发展。在这里,合成各种多孔碳,其孔隙率结构从微孔到微/中孔和中孔,并进行了系统的研究,以建立孔隙特征与储钾性能之间的关系。发现微孔无法为K离子存储提供可访问的活性位点,而中孔可以提供丰富的表面吸附位点,扩大的层间间距有利于插层过程,从而显著改善K-存储性能。因此,具有突出的介孔结构的PCa电极在5℃下实现了421.7mAhg-1的最高可逆容量和191.8mAhg-1的优异倍率性能。组装的钾离子混合电容器在398Wkg-1的功率密度下实现了151.7Whkg-1的令人印象深刻的能量密度。拟议的工作不仅加深了对具有独特孔隙率的碳材料中钾储存的理解,而且为开发具有定制储能能力的PIB高性能阳极铺平了道路。
    Constructing a porous structure is considered an appealing strategy to improve the electrochemical properties of carbon anodes for potassium-ion batteries (PIBs). Nevertheless, the correlation between electrochemical K-storage performance and pore structure has not been well elucidated, which hinders the development of high-performance carbon anodes. Herein, various porous carbons are synthesized with porosity structures ranging from micropores to micro/mesopores and mesopores, and systematic investigations are conducted to establish a relationship between pore characteristics and K-storage performance. It is found that micropores fail to afford accessible active sites for K ion storage, whereas mesopores can provide abundant surface adsorption sites, and the enlarged interlayer spacing facilitates the intercalation process, thus resulting in significantly improved K-storage performances. Consequently, PCa electrode with a prominent mesoporous structure achieves the highest reversible capacity of 421.7 mAh g-1 and an excellent rate capability of 191.8 mAh g-1 at 5 C. Furthermore, the assembled potassium-ion hybrid capacitor realizes an impressive energy density of 151.7 Wh kg-1 at a power density of 398 W kg-1. The proposed work not only deepens the understanding of potassium storage in carbon materials with distinctive porosities but also paves a path toward developing high-performance anodes for PIBs with customized energy storage capabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    增强阳极材料的低电位容量对于提高全电池的工作电压和构建高能量密度的能量存储装置具有重要意义。石墨碳表现出优异的低电位钾储存性能,但显示出低K+扩散动力学。在这里,石墨纳米碳的原位缺陷工程是通过原子自激活策略来实现的,以增强可访问的低电压插入。由于镍石墨化催化剂,石墨碳层在纳米级镍上生长以形成具有短程有序微晶的石墨纳米球。同时,前体中广泛分布的K+诱导周围碳原子的活化,原位产生碳空位作为通道。具有缺陷通道的石墨微晶在低电位和可接近的离子扩散动力学下实现了可逆的K嵌入,有助于高可逆容量(在0.8V下0.05Ag-1时为209mAhg-1)和倍率容量(在1Ag-1时为103.2mAhg-1)。具有普鲁士蓝阴极和石墨纳米碳阳极的全电池在约3.0V.这项工作为碳阳极材料的原位设计提供了一种策略,并为高性能全电池在低电位下的钾储存机制提供了见解。
    Enhancing the low-potential capacity of anode materials is significant in boosting the operating voltage of full-cells and constructing high energy-density energy storage devices. Graphitic carbons exhibit outstanding low-potential potassium storage performance, but show a low K+ diffusion kinetics. Herein, in situ defect engineering in graphitic nanocarbon is achieved by an atomic self-activation strategy to boost the accessible low-voltage insertion. Graphitic carbon layers grow on nanoscale-nickel to form the graphitic nanosphere with short-range ordered microcrystalline due to nickel graphitization catalyst. Meanwhile, the widely distributed K+ in the precursor induces the activation of surrounding carbon atoms to in situ generate carbon vacancies as channels. The graphite microcrystals with defect channels realize reversible K+ intercalation at low-potential and accessible ion diffusion kinetics, contributing to high reversible capacity (209 mAh g-1 at 0.05 A g-1 under 0.8 V) and rate capacity (103.2 mAh g-1 at 1 A g-1). The full-cell with Prussian blue cathode and graphitic nanocarbon anode maintains an obvious working platform at ca. 3.0 V. This work provides a strategy for the in situ design of carbon anode materials and gives insights into the potassium storage mechanism at low-potential for high-performance full-cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电极材料中的异质结在储能装置的循环过程中提供了多种改进,例如音量变化缓冲,加速离子/电子转移,和更好的电极结构完整性,然而,获得具有纳米级域的最佳异质结构在受限材料中仍然具有挑战性。引入了一种新颖的原位电化学方法,以Cu3PSe4为原料开发出可逆的CuSe/PSep-n异质结(CPS-h),靶向钾离子储存的最大稳定性。CPS-h的形成是热力学有利的,其特点是优越的可逆性,最小化扩散屏障,和增强的转换后K+交互。在CPS-h内,本征电场和P-Se键的协同作用增强了电极的稳定性,有效地对抗硒穿梭现象。CuSe和PSe之间的特定取向导致35°晶格失配,在界面处产生大的空间,促进K离子高效迁移。Mott-Schottky分析验证了CPS-h的一致可逆性,强调其电化学可靠性。值得注意的是,CPS-h在10,000个半电池周期内表现出可忽略的0.005%的容量减少,并且在全电池和混合电容器中通过2,000和4,000个周期保持稳定。分别。这项研究强调了电化学动力学在制定高度稳定的p-n异质结中的关键作用,代表了钾离子电池(PIB)电极工程的显着进步。
    Heterojunctions in electrode materials offer diverse improvements during the cycling process of energy storage devices, such as volume change buffering, accelerated ion/electron transfer, and better electrode structure integrity, however, obtaining optimal heterostructures with nanoscale domains remains challenging within constrained materials. A novel in situ electrochemical method is introduced to develop a reversible CuSe/PSe p-n heterojunction (CPS-h) from Cu3PSe4 as starting material, targeting maximum stability in potassium ion storage. The CPS-h formation is thermodynamically favorable, characterized by its superior reversibility, minimized diffusion barriers, and enhanced conversion post K+ interaction. Within CPS-h, the synergy of the intrinsic electric field and P-Se bonds enhance electrode stability, effectively countering the Se shuttling phenomenon. The specific orientation between CuSe and PSe leads to a 35° lattice mismatch generates large space at the interface, promoting efficient K ion migration. The Mott-Schottky analysis validates the consistent reversibility of CPS-h, underlining its electrochemical reliability. Notably, CPS-h demonstrates a negligible 0.005% capacity reduction over 10,000 half-cell cycles and remains stable through 2,000 and 4,000 cycles in full cells and hybrid capacitors, respectively. This study emphasizes the pivotal role of electrochemical dynamics in formulating highly stable p-n heterojunctions, representing a significant advancement in potassium-ion battery (PIB) electrode engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号