polymer film growth

  • 文章类型: Journal Article
    使用针对结构因子给出的广泛接受的“通用缩放ansatz”分类框架,分析了通过气相沉积聚合生长的聚合物薄膜的动力学粗糙化。在过去的二十年里,这种方法在分类各种形式的动态缩放和理解驱动界面粗糙化的机制方面发挥了关键作用。聚合物膜的粗糙度指数一致地确定为α=1.25±0.09,αloc=0.73±0.02,和αs=0.99±0.06。然而,无法明确地将这些粗糙度指数值分配给特定的缩放子类,从而提出了一种实用的替代方案。该报告说明了如何基于在实际空间中测量的两个时间缩放指数之间的关系来一致地识别和分类所有潜在的动态缩放:界面的平均局部斜率和全局斜率。固有的异常粗糙化类最终被分配给以异常\“天然(去除背景斜率)局部高度波动\”为特征的聚合物膜生长。此外,新的分析表明,界面表现出异常的缩放,以前被归类为固有异常粗糙,可能属于超级粗糙阶层,特别是当光谱粗糙度指数αs等于1时。
    The kinetic roughening of polymer films grown by vapor deposition polymerization was analyzed using the widely accepted classification framework of \"generic scaling ansatz\" given for the structure factor. Over the past two decades, this method has played a pivotal role in classifying diverse forms of dynamic scaling and understanding the mechanisms driving interface roughening. The roughness exponents of the polymer films were consistently determined as α=1.25±0.09, αloc=0.73±0.02, and αs=0.99±0.06. However, the inability to unambiguously assign these roughness exponent values to a specific scaling subclass prompts the proposal of a practical alternative. This report illustrates how all potential dynamic scaling can be consistently identified and classified based on the relationship between two temporal scaling exponents measured in real space: the average local slope and the global slope of the interface. The intrinsic anomalous roughening class is conclusively assigned to polymer film growth characterized by anomalous \"native (background slope-removed) local height fluctuations\". Moreover, the new analysis reveals that interfaces exhibiting anomalous scaling, previously classified as intrinsic anomalous roughening, could potentially belong to the super-rough class, particularly when the spectral roughness exponent αs is equal to 1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这篇全面的综述首先追溯了冷等离子体技术作为聚合物工程创新方法的历史发展和进步。该研究强调了来自包括低压辉光放电在内的各种来源的冷等离子体的多功能性(例如,射频电容耦合等离子体)和大气压等离子体(例如,介质阻挡器件,压电等离子体)。它严格地检查关键的操作参数,如减少的电场,压力,放电类型,气体类型和流量,衬底温度,间隙,以及这些变量如何影响合成或改性聚合物的性能。本文还讨论了冷等离子体在聚合物表面改性中的应用,强调表面属性的变化方式(例如,润湿性,附着力,生物相容性)可以通过控制各种表面工艺(蚀刻、粗糙化,交联,功能化,结晶度)。等离子体增强化学气相沉积(PECVD)的详细检查揭示了其在从前体阵列生产聚合物薄膜中的功效。Yasuda\的模型,快速逐步增长聚合(RSGP)和竞争性消融聚合(CAP),被解释为支撑等离子体辅助沉积和聚合过程的基本机制。然后,探索了冷等离子体技术的广泛应用,来自生物医学领域,它用于创建智能药物输送系统和可生物降解的聚合物植入物,它在提高对水净化至关重要的膜式过滤系统性能方面的作用,气体分离,和能源生产。它研究了改善生物塑料性能的潜力,以及使用该技术开发自愈材料的令人兴奋的前景。
    This comprehensive review begins by tracing the historical development and progress of cold plasma technology as an innovative approach to polymer engineering. The study emphasizes the versatility of cold plasma derived from a variety of sources including low-pressure glow discharges (e.g., radiofrequency capacitively coupled plasmas) and atmospheric pressure plasmas (e.g., dielectric barrier devices, piezoelectric plasmas). It critically examines key operational parameters such as reduced electric field, pressure, discharge type, gas type and flow rate, substrate temperature, gap, and how these variables affect the properties of the synthesized or modified polymers. This review also discusses the application of cold plasma in polymer surface modification, underscoring how changes in surface properties (e.g., wettability, adhesion, biocompatibility) can be achieved by controlling various surface processes (etching, roughening, crosslinking, functionalization, crystallinity). A detailed examination of Plasma-Enhanced Chemical Vapor Deposition (PECVD) reveals its efficacy in producing thin polymeric films from an array of precursors. Yasuda\'s models, Rapid Step-Growth Polymerization (RSGP) and Competitive Ablation Polymerization (CAP), are explained as fundamental mechanisms underpinning plasma-assisted deposition and polymerization processes. Then, the wide array of applications of cold plasma technology is explored, from the biomedical field, where it is used in creating smart drug delivery systems and biodegradable polymer implants, to its role in enhancing the performance of membrane-based filtration systems crucial for water purification, gas separation, and energy production. It investigates the potential for improving the properties of bioplastics and the exciting prospects for developing self-healing materials using this technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号