plasticized starch

增塑淀粉
  • 文章类型: Journal Article
    用甘油/柠檬酸/硬脂酸和2-乙酰柠檬酸三丁酯(ATBC)增塑的淀粉,分别,通过挤出和薄膜吹塑工艺用聚(己二酸丁二醇酯-对苯二甲酸酯共聚物(PBAT)进行加工。所有的复合膜的形态测定,机械,热稳定性,结晶,和光学性质。结果表明,在30%甘油增塑的PBAT/热塑性淀粉(TPS)复合膜中,特征在于TPS颗粒尺寸的最小和最窄分布以及TPS颗粒的更均匀分散。然而,用甘油增塑的PBAT/TPS复合膜的吸水率超过了用ATBC作为增塑剂所观察到的吸水率。机械性能表明,当使用10%ATBC时,淀粉晶体结构的塑化不足,20%ATBC,和20%的甘油作为增塑剂,导致PBAT和TPS之间的兼容性差。这导致了外力作用下的应力集中点,不利地影响复合材料的机械性能。与PBAT相比,所有PBAT/TPS复合膜对初始热分解温度表现出负面影响。此外,PBAT/TPS复合薄膜的雾度值超过96%,而纯PBAT的雾度值为47.42%。用10%ATBC增塑的薄膜,20%ATBC,和20%甘油在可见光区域显示较低的透射率值。与其他PBAT/TPS复合膜相比,用30%甘油增塑的膜的透射率增加进一步证明了其优异的增塑效果。本研究为制备低成本PBAT复合材料提供了一种简单可行的方法,它们的延伸有望进一步取代日常应用中的通用塑料。
    Starches plasticized with glycerol/citric acid/stearic acid and tributyl 2-acetylcitrate (ATBC), respectively, were processed with poly (butylene adipate-Co-terephthalate (PBAT) via extrusion and a film-blown process. All the composite films were determined for morphology, mechanical, thermal stability, crystalline, and optical properties. Results show that the most improved morphology was in the 30% glycerol plasticized PBAT/thermoplastic starch (TPS) composite films, characterized by the smallest and narrowest distribution of TPS particle sizes and a more uniform dispersion of TPS particles. However, the water absorption of PBAT/TPS composite films plasticized with glycerol surpassed that observed with ATBC as a plasticizer. Mechanical properties indicated insufficient plasticization of the starch crystal structure when using 10% ATBC, 20% ATBC, and 20% glycerol as plasticizers, leading to poor compatibility between PBAT and TPS. This resulted in stress concentration points under external forces, adversely affecting the mechanical properties of the composites. All PBAT/TPS composite films exhibited a negative impact on the initial thermal decomposition temperature compared to PBAT. Additionally, the haze value of PBAT/TPS composite films exceeded 96%, while pure PBAT had a haze value of 47.42%. Films plasticized with 10% ATBC, 20% ATBC, and 20% glycerol displayed lower transmittance values in the visible light region. The increased transmittance of films plasticized with 30% glycerol further demonstrated their superior plasticizing effect compared to other PBAT/TPS composite films. This study provides a simple and feasible method for preparing low-cost PBAT composites, and their extensions are expected to further replace general-purpose plastics in daily applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过溶剂流延法制备了使用甘油和石墨烯(G)和氧化石墨烯(GO)增强的增塑淀粉(PLS)纳米复合膜。一方面,分析了在PLS矩阵中加入不同G含量的影响。为了提高G纳米片在水中的稳定性,加入丹参提取物作为表面活性剂。所得纳米复合材料呈现改进的机械性能。对于具有5wt%G的纳米复合材料,杨氏模量最大增加了287%,拉伸强度最大增加了57%。似乎丹参作为PLS的共增塑剂。此外,与基质相比,添加最高的G含量导致电导率提高接近5×10-6S/m。另一方面,还掺入GO作为纳米填料以制备纳米复合材料。因此,评估了在PLS纳米复合材料的最终行为中增加GO含量的影响。含GO的PLS纳米复合材料的表征表明,淀粉/GO相互作用强,纳米填料具有良好的分散性。此外,发现用于还原GO的酸性处理是有效的,因为电导率比含G的对应物大150倍。
    Plasticized starch (PLS) nanocomposite films using glycerol and reinforced with graphene (G) and graphene oxide (GO) were prepared by solvent casting procedure. On one hand, the influence of adding different G contents into the PLS matrix was analyzed. In order to improve the stability of G nanoflakes in water, Salvia extracts were added as surfactants. The resulting nanocomposites presented improved mechanical properties. A maximum increase of 287 % in Young\'s modulus and 57 % in tensile strength was achieved for nanocomposites with 5 wt% of G. However, it seemed that Salvia acted as co-plasticizer for the PLS. Moreover, the addition of the highest G content led to an improvement of the electrical conductivity close to 5 × 10-6 S/m compared to the matrix. On the other hand, GO was also incorporated as nanofiller to prepare nanocomposites. Thus, the effect of increasing the GO content in the final behavior of the PLS nanocomposites was evaluated. The characterization of GO containing PLS nanocomposites showed that strong starch/GO interactions and a good dispersion of the nanofiller were achieved. Moreover, the acidic treatment applied for the reduction of the GO was found to be effective, since the electrical conductivity was 150 times bigger than its G containing counterpart.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Composites based on natural rubber and plasticized starch obtained by the conventional method of sulfur cross-linking using four types of vulcanization accelerators (Diphenyl guanidine, 2-Mercaptobenzothiazole, N-Cyclohexyl-2-benzothiazole sulfenamide, and Tetramethylthiuram disulfide) were irradiated with an electron beam in the dose range of 150 and 450 kGy for the purpose of degradation. The vulcanization accelerators were used in different percentages and combinations, resulting in four mixtures with different potential during the cross-linking process (synergistic, activator, or additive). The resulting composites were investigated before and after irradiation in order to establish a connection between the type of accelerator mixture, irradiation dose, and composite properties (gel fraction, cross-linking degree, water absorption, mass loss in water and toluene, mechanical properties, and structural and morphological properties). The results showed that the mixtures became sensitive at the irradiation dose of 300 kGy and at the irradiation dose of 450 kGy, and the consequences of the degradation processes were discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    海泡石粘土是一种天然填料,特别适合与多糖基质一起使用(例如,在淀粉基生物纳米复合材料中),增加它们对广泛应用的吸引力,比如包装。在这里,处理的效果(即,淀粉糊化,添加甘油作为增塑剂,浇铸以获得薄膜),并通过SS-NMR(固态核磁共振)研究了海泡石填料量对淀粉基纳米复合材料微观结构的影响,XRD(X射线衍射)和FTIR(傅里叶变换红外)光谱。形态学,然后通过SEM(扫描电子显微镜)评估透明度和热稳定性,TGA(热重分析)和紫外可见光谱法。证明了该加工方法可以破坏半结晶淀粉的刚性晶格结构,从而获得无定形柔性膜,具有高透明度和良好的耐热性。此外,发现生物纳米复合材料的微观结构本质上取决于海泡石之间的复杂相互作用,甘油和淀粉链,这也被认为会影响淀粉-海泡石复合材料的最终性能。
    Sepiolite clay is a natural filler particularly suitable to be used with polysaccharide matrices (e.g., in starch-based bio-nanocomposites), increasing their attractiveness for a wide range of applications, such as packaging. Herein, the effect of the processing (i.e., starch gelatinization, addition of glycerol as plasticizer, casting to obtain films) and of the sepiolite filler amount on the microstructure of starch-based nanocomposites was investigated by SS-NMR (solid-state nuclear magnetic resonance), XRD (X-ray diffraction) and FTIR (Fourier-transform infrared) spectroscopy. Morphology, transparency and thermal stability were then assessed by SEM (scanning electron microscope), TGA (thermogravimetric analysis) and UV-visible spectroscopy. It was demonstrated that the processing method allowed to disrupt the rigid lattice structure of semicrystalline starch and thus obtain amorphous flexible films, with high transparency and good thermal resistance. Moreover, the microstructure of the bio-nanocomposites was found to intrinsically depend on complex interactions among sepiolite, glycerol and starch chains, which are also supposed to affect the final properties of the starch-sepiolite composite materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In this work, nanocomposite hydrogels were prepared by gamma-radiation copolymerization of acrylic acid (AAc) onto plasticized starch (PLST)/montmorillonite clay (MMT)/chitosan (CS) blends. The effect of irradiation dose and MMT nanoparticle contents on the gel fraction and water absorption characters of PAAc-co-(PLST/MMT/CS) hydrogels was investigated. In addition, the structure-property behavior of the nanocomposite hydrogels was characterized by FTIR spectroscopy, thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The study showed that the appropriate dose of gamma irradiation to achieve homogeneous nanocomposite hydrogels films and the highest absorption in water was 15 kGy, regardless of composition. The introduction of MMT up to 5-wt (%) improved the physical properties and enhanced the drug uptake-release characters. The effect of the nanocomposite hydrogels on skin wound healing were evaluated by rat models, taking sulfanilamide as a model drug. The profiles of rat skin after different time intervals up 21 days revealed that wounds treated with the copolymer hydrogels were healed faster which it may considered as a potential candidate for wound dressing materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Polymeric composites based on natural rubber (NR) and plasticized starch (PS) obtained by peroxide cross-linking have been subjected to electron beam irradiation in order to investigate their degradation. The amount of PS ranged from 10 to 50 phr and the irradiation dose from 150 to 450 kGy. Irradiation was performed in atmospheric conditions using a linear electron accelerator of 5.5 MeV. Changes in chemical, physical, structural, and morphological properties of composites were correlated with variables, such as PS loading and irradiation dose. Thus, mechanical properties, gel fraction, cross-linking degree, water uptake, weight loss in toluene/water were compared with those obtained before irradiation. The changes in structure and morphology were studied by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Both PS loading and irradiation dose were found to be responsible for the degradation installing. Moreover, it has been shown that at the dose of 450 kGy, chain scission is dominant over cross-linking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Nano-biocomposites based on halloysite nanoclay and potato starch were elaborated by melt blending with different polyol plasticizers such as glycerol, sorbitol or a mixture of both. The effects of the type of plasticizer and clay content on potato starch/halloysite nano-biocomposites were studied. SEM analyses combined with ATR-FTIR results showed that a high content of sorbitol had a negative effect on the dispersion of the halloysite nanoclay in the starchy matrix. XRD results demonstrated that incorporation of halloysite nanoclay into glycerol-plasticized starch systems clearly led to the formation of a new crystalline structure. The addition of halloysite nanoclay improved the thermal stability and decreased the moisture absorption of the nano-biocomposites, whatever the type of plasticizer used. Halloysite addition led to more pronounced improvement in mechanical properties for glycerol plasticized system compared to nanocomposites based on sorbitol and glycerol/sorbitol systems with a 47% increase in tensile strength for glycerol-plasticized starch compared to 10.5% and 11% for sorbitol and glycerol/sorbitol systems, respectively. The use of a mixture of polyols was found to be a promising way to optimize the mechanical properties of these starch-based nanocomposites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The obtaining and characterization of some environmental-friendly composites that are based on natural rubber and plasticized starch, as filler, are presented. These were obtained by peroxide cross-linking in the presence of a polyfunctional monomer used here as cross-linking co-agent, trimethylolpropane trimethacrylate. The influence of plasticized starch amount on the composites physical and mechanical characteristics, gel fraction and cross-link density, water uptake, structure and morphology before and after accelerated (thermal) degradation, and natural (for one year in temperate climate) ageing, was studied. Differences of two orders of magnitude between the degradation/aging methods were registered in the case of some mechanical characteristics, by increasing the plasticized starch amount. The cross-link density, water uptake and mass loss were also significant affected by the plasticized starch amount increasing and exposing for one year to natural ageing in temperate climate. Based on the results of Fourier Transform Infrared Spectroscopy (FTIR) and cross-link density measurements, reaction mechanisms attributed to degradation induced by accelerated and natural ageing were done. SEM micrographs have confirmed in addition that by incorporating a quantity of hydrophilic starch amount over 20 phr and by exposing the composites to natural ageing, and then degradability can be enhanced by comparing with thermal degradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    A solution mixing and ultrasonic dispersion method as a green, the fast, inexpensive and effective technique was utilized to prepare glycerol plasticized-starch (GPS)/ascorbic acid (AA)-MWCNTs nanocomposites (NCs) via the introduction of various amounts of AA-MWCNTs (3, 6 and 9wt%) as filler into GPS matrix. The GPS was synthesized by addition of glycerol (50%) as a plasticizer to starch which enhances its flexibility. Characterization of the obtained GPS/AA-MWCNTs NCs was accomplished by different techniques. The optimum filler content for the generation of fine electrical conductivity and good mechanical properties was found to be about 3wt%. The distribution of AA-MWCNTs at the low content (3wt%) in the GPS matrix was better due to the strong linkage between nanofiller and GPS in GPS/AA-MWCNTs NC. The results of adsorption studies showed that the fabricated NC can be a good adsorbent for removal of methylene blue (MB) dye from aqueous solutions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Starch was combined with plasticizers such as glycerol, sorbitol, glycerol/sorbitol and urea/ethanolamine blends by means of high shear extrusion process to prepare thermoplastic starch (TPS). Effect of storage time and plasticizers on the structural stability of melt processed TPS was investigated. Morphological observation, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy reveal that melt extrusion process is efficient in transforming granular starch into a plasticized starch for all plasticizer compositions. XRD analysis highlights major changes in the microstructure of plasticized starch, and dependence of crystalline type and degree of crystallinity mainly on the plasticizer composition and storage time. Dynamical mechanical analysis (DMA) yields a decrease of the peak intensity of loss factor with aging time. The effect of ageing on tensile strength also appears to be highly dependent on the plasticizer composition. Thus, through different plasticizer combinations and ageing, starch-based materials with significant differences in tensile properties can be obtained, which may be tuned to meet the requirements of a wide range of applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号