plasmonic

等离子体激元
  • 文章类型: Journal Article
    使用MultiphysicsCOMSOL模拟了直径为20nm的二氧化硅(SiO2)纳米颗粒被等离子体纳米孔传感器捕获时产生的双峰光电数据,并与传感器测量值进行了比较,以实现紧密匹配的实验参数。纳米传感器,采用自诱导反向作用(SIBA)在固态纳米孔(ssNP)顶部的双纳米孔(DNH)结构的中心光学捕获纳米颗粒。这种SIBA驱动的纳米孔电泳(SANE)传感器能够同时捕获由作用在被捕获的SiO2纳米颗粒上的几个潜在力产生的光学和电学数据:等离子体光学捕获,电渗,电泳,粘性阻力,和热传导力。Multiphysics模拟能够解剖作用在纳米颗粒上的力的相对贡献,作为其上方和通过传感器的ssNP的位置的函数。模拟和实验之间的比较证明了在纳米颗粒进入和离开SANE传感器时生成的光学和电学时间序列数据的定性相似性。这些实验参数匹配的模拟表明,光力和电力之间的竞争将捕获平衡位置移至靠近ssNP顶部开口的位置,相对于位于几nm以上的光学捕获力最大值。实验估计的捕获SiO2纳米粒子所需的光学力的最小值与相应的光电力平衡的模拟预测一致。Multiphysics模拟与实验的比较提高了我们对光和电力之间的相互作用的理解,作为跨等离子体纳米孔传感器的纳米粒子位置的函数。
    Bimodal optical-electrical data generated when a 20 nm diameter silica (SiO2) nanoparticle was trapped by a plasmonic nanopore sensor were simulated using Multiphysics COMSOL and compared with sensor measurements for closely matching experimental parameters. The nanosensor, employed self-induced back action (SIBA) to optically trap nanoparticles in the center of a double nanohole (DNH) structure on top a solid-state nanopores (ssNP). This SIBA actuated nanopore electrophoresis (SANE) sensor enables simultaneous capture of optical and electrical data generated by several underlying forces acting on the trapped SiO2 nanoparticle: plasmonic optical trapping, electroosmosis, electrophoresis, viscous drag, and heat conduction forces. The Multiphysics simulations enabled dissecting the relative contributions of those forces acting on the nanoparticle as a function of its location above and through the sensor\'s ssNP. Comparisons between simulations and experiments demonstrated qualitative similarities in the optical and electrical time-series data generated as the nanoparticle entered and exited from the SANE sensor. These experimental parameter-matched simulations indicated that the competition between optical and electrical forces shifted the trapping equilibrium position close to the top opening of the ssNP, relative to the optical trapping force maximum that was located several nm above. The experimentally estimated minimum for the optical force needed to trap a SiO2 nanoparticle was consistent with corresponding simulation predictions of optical-electrical force balance. The comparison of Multiphysics simulations with experiments improves our understanding of the interplay between optical and electrical forces as a function of nanoparticle position across this plasmonic nanopore sensor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    柔性器件设计和应用需要将具有组合的多功能的纳米复合薄膜集成在柔性衬底上。例如,结合等离子体和磁性能可以导致独特的光学可切换磁性设备和传感器。在这项工作中,已在柔性云母基底上证明了多相TiN-Au-Ni纳米复合体系,其具有嵌入TiN基质中的核壳状Au-Ni纳米柱。已将三相纳米复合薄膜与其单金属纳米复合薄膜进行了比较,即,TiN-Au和TiN-Ni。磁性测量结果表明,TiN-Au-Ni/云母和TiN-Ni/云母均具有室温铁磁性。通过改变纳米复合材料膜的金属组分已经实现了可调谐等离子体性质。进行循环弯曲测试以验证柔性纳米复合材料薄膜在弯曲时的性能可靠性。这项工作为在云母上集成复杂的基于氮化物的纳米复合材料设计,以实现多功能柔性纳米器件应用开辟了一条新途径。
    The integration of nanocomposite thin films with combined multifunctionalities on flexible substrates is desired for flexible device design and applications. For example, combined plasmonic and magnetic properties could lead to unique optical switchable magnetic devices and sensors. In this work, a multiphase TiN-Au-Ni nanocomposite system with core-shell-like Au-Ni nanopillars embedded in a TiN matrix has been demonstrated on flexible mica substrates. The three-phase nanocomposite film has been compared with its single metal nanocomposite counterparts, i.e., TiN-Au and TiN-Ni. Magnetic measurement results suggest that both TiN-Au-Ni/mica and TiN-Ni/mica present room-temperature ferromagnetic property. Tunable plasmonic property has been achieved by varying the metallic component of the nanocomposite films. The cyclic bending test was performed to verify the property reliability of the flexible nanocomposite thin films upon bending. This work opens a new path for integrating complex nitride-based nanocomposite designs on mica towards multifunctional flexible nanodevice applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有空间对称性破坏的等离子体超表面是关键材料,在诸如偏振控制光子器件和用于手性传感的纳米光子平台等领域具有重要应用。在本文中,我们引入了平面等离子体超表面,厚度不到波长的十分之一,具有由三个等边三角形形成的纳米空腔。这种配置创造了统一的,薄的超表面。通过实验测量和数值模拟相结合,我们证明了这些等离子体超表面固有的超手性。我们解决了在可见光谱中实现光学手性的强烈增强的挑战,达到与3D手性超表面相当的水平。
    Plasmonic metasurfaces with spatial symmetry breaking are crucial materials with significant applications in fields such as polarization-controlled photonic devices and nanophotonic platforms for chiral sensing. In this paper, we introduce planar plasmonic metasurfaces, less than one-tenth of a wavelength thick, featuring nanocavities formed by three equilateral triangles. This configuration creates uniform, thin metasurfaces. Through a combination of experimental measurements and numerical modeling, we demonstrate the inherent superchirality of these plasmonic metasurfaces. We address the challenge of achieving a strong enhancement of optical chirality in the visible spectrum, reaching levels comparable to those of 3D chiral metasurfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于热点增强了信号的可检测性,等离子体激元促进了各种分析应用。在实际应用中,制造简单是至关重要的,大规模,和可重现的等离子体基底。去湿处理,通过对金属膜进行直接热退火,已经被用作制造这种等离子体纳米结构的简单方法。然而,定制金属膜去湿过程的演变带来了相当大的实验复杂性,主要是由于纳米级结构的形成。这里,我们使用掠入射小角和广角X射线散射来原位研究在低温去湿条件下在自组装Au纳米颗粒阵列上高功率脉冲磁控溅射沉积Ag。这种方法使我们能够检查二元Au/Ag纳米结构的直接形成以及去湿过程对双金属纳米颗粒空间排列的相应影响。观察到,在100°C下的去湿足以有利于建立双金属纳米结构的均质结构构型,这对于局部表面等离子体共振(LSPR)是有益的。所制备的金属纳米结构显示出用于罗丹明6G分子的表面增强拉曼散射(SERS)检测的潜在应用。作为SERS平台,在去湿条件下形成的双金属纳米结构被证明优于在没有去湿条件下形成的双金属纳米结构。这项工作中的方法被认为是制造等离子体纳米结构的简便策略。
    Plasmons have facilitated diverse analytical applications due to the boosting signal detectability by hot spots. In practical applications, it is crucial to fabricate straightforward, large-scale, and reproducible plasmonic substrates. Dewetting treatment, via applying direct thermal annealing of metal films, has been used as a straightforward method in the fabrication of such plasmonic nanostructures. However, tailoring the evolution of the dewetting process of metal films poses considerable experimental complexities, mainly due to nanoscale structure formation. Here, we use grazing-incidence small- and wide-angle X-ray scattering for the in situ investigation of the high-power impulse magnetron sputter deposition of Ag on self-assembled Au nanoparticle arrays at low-temperature dewetting conditions. This approach allows us to examine both the direct formation of binary Au/Ag nanostructure and the consequential impact of the dewetting process on the spatial arrangement of the bimetallic nanoparticles. It is observed that the dewetting at 100 °C is sufficient to favor the establishment of a homogenized structural configuration of bimetallic nanostructures, which is beneficial for localized surface plasmon resonances (LSPRs). The fabricated metal nanostructures show potential application for the surface-enhanced Raman scattering (SERS) detection of rhodamine 6G molecules. As SERS platform, bimetallic nanostructures formed with dewetting conditions turn out to be superior to those without dewetting conditions. The method in this work is envisioned as a facile strategy for the fabrication of plasmonic nanostructures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解“热”的动力学,非辐射等离子体激元衰变产生的高能电子对于优化光催化和能量转换的应用至关重要。这项研究提出了等离子体金属中电子动力学的分析,专注于连续波(CW)照明期间的稳态行为。使用非弹性光谱技术,我们量化了激发过程中不同载体种群的温度和寿命。一个重要的发现是热电子寿命随着电子温度的降低而单调增加。我们还观察到,与带间激发相比,带内激发期间热电子温度增加了1.22倍,载流子寿命相应增加了2.34倍。假设带间激发过程中的较短寿命是由于非热空穴和热电子的直接复合所致,强调稳态动力学。我们的结果有助于弥合超快和稳态光谱学之间的知识鸿沟,提供优化等离子体应用的关键见解。
    Understanding the dynamics of \"hot\", highly energetic electrons resulting from nonradiative plasmon decay is crucial for optimizing applications in photocatalysis and energy conversion. This study presents an analysis of electron kinetics within plasmonic metals, focusing on the steady-state behavior during continuous-wave (CW) illumination. Using an inelastic spectroscopy technique, we quantify the temperature and lifetimes of distinct carrier populations during excitation. A significant finding is the monotonic increase in hot electron lifetime with decreases in electronic temperature. We also observe a 1.22× increase in hot electron temperature during intraband excitation compared to interband excitation and a corresponding 2.34× increase in carrier lifetime. The shorter lifetimes during interband excitation are hypothesized to result from direct recombination of nonthermal holes and hot electrons, highlighting steady-state kinetics. Our results help bridge the knowledge gap between ultrafast and steady-state spectroscopies, offering critical insights for optimizing plasmonic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有粒子间欧姆接触的纳米粒子组件对于纳米器件制造至关重要。尽管在DNA可编程纳米粒子组装方面取得了巨大进展,无缝焊接离散组件到焊接连续三维(3D)配置仍然具有挑战性。这里,我们引入了一种单链DNA编码策略来定制具有可调形态和等离子体性质的焊接金属纳米结构。我们演示了通过溶液中的化学焊接将金纳米颗粒组装体精确焊接成具有颗粒间欧姆接触的连续金属纳米结构。我们发现,焊接的金纳米颗粒组件显示出一致的形态,焊接效率超过90%,比如杆状的,三角形,和四面体金属纳米结构。接下来,我们通过焊接不同尺寸和形状的金纳米颗粒组件,展示了这种策略的多功能性。此外,实验和模拟表明,焊接的金纳米颗粒组件表现出确定的等离子体耦合。这种单链DNA编码的焊接系统可以为准确构建功能等离子体纳米材料和设备提供新的途径。
    Nanoparticle assemblies with interparticle ohmic contacts are crucial for nanodevice fabrication. Despite tremendous progress in DNA-programmable nanoparticle assemblies, seamlessly welding discrete components into welded continuous three-dimensional (3D) configurations remains challenging. Here, we introduce a single-stranded DNA-encoded strategy to customize welded metal nanostructures with tunable morphologies and plasmonic properties. We demonstrate the precise welding of gold nanoparticle assemblies into continuous metal nanostructures with interparticle ohmic contacts through chemical welding in solution. We find that the welded gold nanoparticle assemblies show a consistent morphology with welded efficiency over 90%, such as the rod-like, triangular, and tetrahedral metal nanostructures. Next, we show the versatility of this strategy by welding gold nanoparticle assemblies of varied sizes and shapes. Furthermore, the experiment and simulation show that the welded gold nanoparticle assemblies exhibit defined plasmonic coupling. This single-stranded DNA encoded welding system may provide a new route for accurately building functional plasmonic nanomaterials and devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表面增强拉曼散射(SERS)利用金属纳米结构中的局部表面等离子体共振来显着放大拉曼信号并进行超灵敏分析。基于SERS的分析系统的关键因素是在纳米结构内形成许多电磁热点。代表从激发的局部表面等离子体激元出现的高度集中场的区域。这些强烈的热点场可以将拉曼信号放大几个数量级,促进在极低浓度下的分析物检测和在单纳米颗粒水平上的高灵敏度分子鉴定。在这项研究中,使用三步种子介导的生长方法并添加银离子,合成了介观星形金颗粒(金介晶)。我们的研究证实,通过银原子(AgUPD)在金表面的欠电位沉积引起的多向生长效应,成功合成了具有许多尖锐尖端的金中星。AgUPD过程影响贵金属的纳米晶生长动力学及其形态演化,从而导致具有高折射率刻面和突出尖端或分支的复杂纳米结构。通过利用这种现象,合成了具有独特星状形态的介观金颗粒,该颗粒具有从中心核发出的多个尖锐突起。金色中星的尖锐尖端促进了强烈的局部电磁场,这导致在单粒子水平的强SERS增强。当在基板上以多层阵列排列时,除了粒子内局部场增强之外,还可以通过粒子间热点进一步增强电磁场。使这些阵列成为具有改进的灵敏度的高效SERS活性基底。使用拉曼标记的分析物进行的评估显示,由于粒子间热点增强,与单个中星相比,SERS信号强度更高。这些底物能够检测浓度为10-9M的分析物,证明了它们在痕量分析应用中的显着灵敏度。
    Surface-enhanced Raman scattering (SERS) exploits localized surface plasmon resonances in metallic nanostructures to significantly amplify Raman signals and perform ultrasensitive analyses. A critical factor for SERS-based analysis systems is the formation of numerous electromagnetic hot spots within the nanostructures, which represent regions with highly concentrated fields emerging from excited localized surface plasmons. These intense hotspot fields can amplify the Raman signal by several orders of magnitude, facilitating analyte detection at extremely low concentrations and highly sensitive molecular identification at the single-nanoparticle level. In this study, mesoscopic star-shaped gold particles (gold mesostars) were synthesized using a three-step seed-mediated growth approach coupled with the addition of silver ions. Our study confirms the successful synthesis of gold mesostars with numerous sharp tips via the multi-directional growth effect induced by the underpotential deposition of silver adatoms (AgUPD) onto the gold surfaces. The AgUPD process affects the nanocrystal growth kinetics of the noble metal and its morphological evolution, thereby leading to intricate nanostructures with high-index facets and protruding tips or branches. Mesoscopic gold particles with a distinctive star-like morphology featuring multiple sharp projections from the central core were synthesized by exploiting this phenomenon. Sharp tips of the gold mesostars facilitate intense localized electromagnetic fields, which result in strong SERS enhancements at the single-particle level. Electromagnetic fields can be further enhanced by interparticle hot spots in addition to the intraparticle local field enhancements when arranged in multilayered arrays on substrates, rendering these arrays as highly efficient SERS-active substrates with improved sensitivity. Evaluation using Raman-tagged analytes revealed a higher SERS signal intensity compared to that of individual mesostars because of interparticle hot spots enhancements. These substrates enabled analyte detection at a concentration of 10- 9 M, demonstrating their remarkable sensitivity for trace analysis applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在本文中,我们报告了一种基于石墨烯的等离子体光电探测器,该探测器使用粒子群优化(PSO)算法进行了优化,并与互补金属氧化物半导体(CMOS)技术兼容。与更复杂的替代方案相比,所提出的光电探测器结构被设计为最小化制造挑战并降低生产成本。石墨烯以其独特的性质被用于检测区域,氮化钛(TiN)作为CMOS兼容金属,两者都有助于等离子体激发。光电探测器具有受多个独立变量影响的关键参数。然而,实际的约束阻止了所有变量的彻底调整以达到最佳参数值,通常导致基于几个简化模型的分析。在这里,我们通过使用PSO算法的功能在光电探测器领域提出了一种新方法来优化这些变量。因此,对于波长为1550nm的拟议器件,电压响应率为210.6215V/W,电流响应率为3.7213A/W,超压缩长度小于3μm,获得的比探测率为2.566×107琼斯。此外,所讨论的设备在零偏压下的光热电效应(PTE)下工作,并且具有零暗电流,这最终导致4.5361pW/Hz的非常低的噪声等效功率(NEP)。
    In this paper, we report a graphene-based plasmonic photodetector optimized using the particle swarm optimization (PSO) algorithm and compatible with complementary metal-oxide-semiconductor (CMOS) technology. The proposed photodetector structure is designed to minimize fabrication challenges and reduce production costs compared to more complex alternatives. Graphene has been used for its unique properties in the detection region, titanium nitride (TiN) as a CMOS-compatible metal, and both to aid in plasmonic excitation. Photodetectors have key parameters influenced by multiple independent variables. However, practical constraints prevent thorough adjustment of all variables to achieve optimal parameter values, often resulting in analysis based on several simplified models. Here we optimize these variables by presenting a new approach in the field of photodetectors using the capabilities of the PSO algorithm. As a result, for the proposed device at the wavelength of 1550 nm, the voltage responsivity is 210.6215 V/W, the current responsivity is 3.7213 A/W, the ultra-compressed length is less than 3 μ m , and the specific detectivity is 2.566× 10 7 Jones were obtained. Furthermore, the device in question works under the photothermoelectric effect (PTE) at zero bias and has zero dark current, which ultimately resulted in a very low noise equivalent power (NEP) of 4.5361 pW / Hz .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在本文中,我们从理论上和实验上研究了双峰干涉传感器的灵敏度,其中在同一物理波导中传播的具有不同属性的两个等离子体激元模式之间发生干涉。与众所周知的马赫-曾德尔干涉(MZI)传感器相比,我们首次表明双模传感器的灵敏度与传感区域长度无关。通过将理论应用于集成的等离子体光子双模传感器来验证这一点,该传感器包括在两个可访问的SU-8光子波导之间共集成的铝(Al)等离子体条纹波导。数值模拟了一系列利用不同长度的等离子体条纹的双峰传感器,显示所有传感器变体的体折射率(RI)灵敏度约为5700nm/RIU,证实了理论结果。理论和数值结果也通过芯片级RI传感实验在三个制造的SU-8/Al双模传感器上进行了实验验证,等离子体传感长度分别为50、75和100μm。发现获得的实验RI灵敏度非常接近,等于4464、4386和4362nm/RIU,分别,确认感测长度对双模传感器灵敏度没有影响。上述结果减轻了设计和光损耗的限制,为更紧凑和强大的传感器铺平道路,可以在超短的传感长度实现高灵敏度值。
    In this paper, we study both theoretically and experimentally the sensitivity of bimodal interferometric sensors where interference occurs between two plasmonic modes with different properties propagating in the same physical waveguide. In contrast to the well-known Mach-Zehnder interferometric (MZI) sensor, we show for the first time that the sensitivity of the bimodal sensor is independent of the sensing area length. This is validated by applying the theory to an integrated plasmo-photonic bimodal sensor that comprises an aluminum (Al) plasmonic stripe waveguide co-integrated between two accessible SU-8 photonic waveguides. A series of such bimodal sensors utilizing plasmonic stripes of different lengths were numerically simulated, demonstrating bulk refractive index (RI) sensitivities around 5700 nm/RIU for all sensor variants, confirming the theoretical results. The theoretical and numerical results were also validated experimentally through chip-level RI sensing experiments on three fabricated SU-8/Al bimodal sensors with plasmonic sensing lengths of 50, 75, and 100 μm. The obtained experimental RI sensitivities were found to be very close and equal to 4464, 4386, and 4362 nm/RIU, respectively, confirming that the sensing length has no effect on the bimodal sensor sensitivity. The above outcome alleviates the design and optical loss constraints, paving the way for more compact and powerful sensors that can achieve high sensitivity values at ultra-short sensing lengths.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电池行业的快速发展带来了大量的废旧电池污染。如何实现废旧电池的高价值利用是一个亟待解决的问题。在这里,首先使用碳热还原法从废旧锂离子电池(LIBs)中回收钴和钛化合物(LTCO),通过微波水热技术制备了等离子凹凸棒石/Co(Ti)Ox(H-ATP/Co(Ti)Ox)纳米复合材料。H-ATP具有大的比表面积和足够的活性位点来捕获CO2分子。生物炭不仅将废弃LIB的尖晶石相还原成Co3O4和TiO2等金属氧化物,而且增加了载体的分离和传输,从而加速CO2的吸附和还原。此外,H-ATP/Co(Ti)Ox在可见至近红外区域表现出局域表面等离子体共振效应(LSPR),释放出高能热电子,提高催化剂的表面温度,进一步改善CO2的催化还原,CO产率高达14.7μmol·g-1·h-1。目前的工作证明了通过利用天然矿物和废电池来减少二氧化碳的潜力。
    The rapid development of the battery industry has brought about a large amount of waste battery pollution. How to realize the high-value utilization of waste batteries is an urgent problem to be solved. Herein, cobalt and titanium compounds (LTCO) were firstly recovered from spent lithium-ion batteries (LIBs) using the carbon thermal reduction approach, and plasmonic attapulgite/Co(Ti)Ox (H-ATP/Co(Ti)Ox) nanocomposites were prepared by the microwave hydrothermal technique. H-ATP had a large specific surface area and enough active sites to capture CO2 molecules. The biochar not only reduced the spinel phase of waste LIBs into metal oxides including Co3O4 and TiO2 but also increased the separation and transmission of the carriers, thereby accelerating the adsorption and reduction of CO2. In addition, H-ATP/Co(Ti)Ox exhibited a localized surface plasmon resonance effect (LSPR) in the visible to near-infrared region and released high-energy hot electrons, enhancing the surface temperature of the catalyst and further improving the catalytic reduction of CO2 with a high CO yield of 14.7 μmol·g-1·h-1. The current work demonstrates the potential for CO2 reduction by taking advantage of natural mineral and spent batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号