photothermal treatment

光热处理
  • 文章类型: Journal Article
    活性氧(ROS)为抵抗细菌感染和应对抗生素耐药性的持续挑战提供了有希望的方法。纳米酶模拟天然酶并成为ROS水平的有效调节剂。在这项研究中,选择具有高比表面积的NH2-MIL-88B作为核心,共价有机骨架材料TP-TACOF采用“顺序生长”技术包裹。随后,通过第二次水热处理,将具有优异光热性能的无机材料CuS集成到外层中,合成了NH2-MIL-88B@TP-TA@CuSX复合纳米酶。不同于传统的纳米酶,NH2-MIL-88B@TP-TA@CuSX纳米酶在中性条件下(pH=7)仍具有良好的催化效果。此外,NH2-MIL-88B@TP-TA@CuSX具有良好的近红外(NIR)吸收率和高的光热转换效率(PTCE为48.7%),可用于细菌的光热处理(PTT)。温和的光热效应可以进一步增强NH2-MIL-88B@TP-TA@CuSX的类酶催化活性,因此H2O2可以更有效地催化产生大量的ROS。体外实验结果表明,NH2-MIL-88B@TP-TA@CuSX能有效杀灭大肠杆菌(E.大肠杆菌)和金黄色葡萄球菌(S.金黄色葡萄球菌)在激光辐照和H2O2的存在下。
    Reactive oxygen species (ROS) provide a promising way to fight bacterial infection and meet the persistent challenge of antibiotic resistance. Nanoenzyme mimics natural enzyme and becomes an effective regulator of ROS level. In this study, NH2-MIL-88B with high specific surface area was selected as the core, and the covalent organic skeleton material TP-TA COF was wrapped by \"sequential growth\" technology. Subsequently, through the second hydrothermal treatment, the inorganic material CuS with excellent photothermal performance was integrated into the outer layer, and the NH2-MIL-88B@TP-TA@CuSX composite nanoenzyme was synthesized. Different from the traditional nano-enzyme, NH2-MIL-88B@TP-TA@CuSX nano-enzyme still has good catalytic effect under neutral conditions (pH=7). In addition, NH2-MIL-88B@TP-TA@CuSX has good near infrared (NIR) absorption rate and high photothermal conversion efficiency (PTCE is 48.7 %), which can be used for photothermal treatment (PTT) of bacteria. Mild photothermal effect can further enhance the enzyme-like catalytic activity of NH2-MIL-88B@TP-TA@CuSX, so that H2O2 can be more efficiently catalyzed to produce a large number of ROS. The experimental results in vitro show that NH2-MIL-88B@TP-TA@CuSX can effectively kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in the presence of laser irradiation and H2O2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血液中的循环肿瘤细胞(CTC)是癌症患者死亡的主要原因。对于癌症的早期诊断和治疗同时检测和杀死CTC是极其重要的。在这项工作中,一个新的杂交纳米层,即金纳米粒子/金纳米棒@聚多巴胺(AuNPs/AuNRs@PDA),涂覆在Ω形光纤(Ω-FO)上,用于局部表面等离子体共振(LSPR),以执行肿瘤细胞传感和光热治疗(PTT)。在温和条件下通过多巴胺的自聚合在裸光纤上形成PDA纳米层。AuNRs和AuNP被吸收在PDA纳米层的表面上以形成杂化的纳米层。杂化的纳米层修饰的Ω-FOLSPR表现出37.59的高折射率灵敏度(RIS)(a。u/RIU)和光热转换效率。用适体的识别元件修饰后,Ω-FOLSPR用于开发敏感和特异性的肿瘤细胞传感。在近红外光(NIR)激光照射下,Ω-FOLSPR可以杀死捕获的肿瘤细胞,凋亡/坏死率为62.6%,对非靶细胞的副作用低。FOLSPR传感器实现了CTC传感和PTT的双重功能,为癌症的早期诊断和治疗提供了新的思路。
    Circulating tumor cell (CTC) in the blood is the main cause of cancer metastasis for death in cancer patients. It is extremely important for cancer diagnosis at an early stage and treatment to simultaneously detect and kill the CTCs. In this work, a new hybridized nanolayer, namely gold nanoparticle/gold nanorods@ Polydopamine (AuNPs/AuNRs@PDA), was coated on the Ω-shaped fiber optics (Ω-FO) for localized surface plasmonic resonance (LSPR) to perform tumor cell sensing and photothermal treatment (PTT). The PDA nanolayer was formed on a bare fiber optic through the self-polymerization of dopamine under mild conditions. The AuNRs and AuNPs were absorbed on the surface of the PDA nanolayer to form a hybridized nanolayer. The hybridized nanolayer-modified Ω-FO LSPR exhibited a high refractive index sensitivity (RIS) of 37.59 (a.u/RIU) and photothermal conversion efficiency. After being modified with the recognition element of aptamer, the Ω-FO LSPR was used to develop a sensitive and specifical tumor cell sensing. Under the irradiation of near-infrared light (NIR) laser, the Ω-FO LSPR can kill the captured tumor cells with the apoptotic/necrotic rate of 62.6 % and low side-effect for the nontarget cells. The FO LSPR sensor realized the dual functions of CTC sensing and PTT, which provided a new idea for the early diagnosis and treatment of cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肿瘤的治疗仍然面临相当大的挑战。虽然传统的治疗方法如手术,化疗,放射治疗提供了一些疗效,它们的副作用和局限性凸显了寻找更精确治疗策略的重要性.适配体因其良好的亲和力和靶向性,已成为药物传递系统领域的重要靶分子,逐渐成为从基础研究到临床应用的重要环节。在本文中,我们讨论了适体介导的纳米药物的最新进展,以及适体介导的光动力疗法,光热疗法,以及肿瘤治疗的免疫治疗策略,并探讨了适体介导治疗肿瘤的可能性。这篇综述的目的是通过总结这些创新策略,为使用适体介导的疗法治疗肿瘤提供新的见解。从而最终提高癌症患者的治疗效果。
    The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肿瘤复发和大量骨缺损是口腔颌面部肿瘤术后治疗的两大挑战,对患者的健康构成严重威胁。在这里,为了消除残留的肿瘤细胞,同时促进成骨,通过制备CaO2或/和CeO2纳米颗粒(NPs)/壳聚糖溶液并将NPs改性为聚多巴胺(PDA)改性的3D打印TCP支架,设计了过氧化氢(H2O2)自给自足的TCP-PDA-CaO2-CeO2(TPCC)支架。负载在支架上的CaO2NPs可以在酸性肿瘤微环境中释放Ca2和足够的H2O2。在CeO2NP的过氧化物酶(POD)的催化作用下,生成的H2O2可以进一步产生羟基自由基(·OH),其中PDA涂层的光热效应增强了其POD催化效应。总的来说,负载在支架上的NP化学实现H2O2自给自足和·OH产生的级联反应,同时在功能上实现抗肿瘤和骨促进的协同作用。体外和体内研究表明,支架表现出有效的骨诱导作用,诱导成骨细胞分化,促进骨整合。因此,多功能复合支架不仅验证了化学动力疗法(CDT)级联疗法的概念,同时也为口腔颌面部肿瘤的术后治疗提供了一种有前景的临床策略。本文受版权保护。保留所有权利。
    Tumor recurrence and massive bone defects are two critical challenges for postoperative treatment of oral and maxillofacial tumor, posing serious threats to the health of patients. Herein, in order to eliminate residual tumor cells and promote osteogenesis simultaneously, the hydrogen peroxide (H2O2) self-sufficient TCP-PDA-CaO2-CeO2 (TPCC) scaffolds are designed by preparing CaO2 or/and CeO2 nanoparticles (NPs)/chitosan solution and modifying the NPs into polydopamine (PDA)-modified 3D printed TCP scaffolds by rotary coating method. CaO2 NPs loaded on the scaffolds can release Ca2+ and sufficient H2O2 in the acidic tumor microenvironment (TME). The generated H2O2 can further produce hydroxyl radicals (·OH) under catalysis effect by peroxidase (POD) activity of CeO2 NPs, in which the photothermal effect of the PDA coating enhances its POD catalytic effect. Overall, NPs loaded on the scaffold chemically achieve a cascade reaction of H2O2 self-sufficiency and ·OH production, while functionally achieving synergistic effects on anti-tumor and bone promotion. In vitro and in vivo studies show that the scaffolds exhibit effective osteo-inductivity, induced osteoblast differentiation and promote osseointegration. Therefore, the multifunctional composite scaffolds not only validate the concept of chemo-dynamic therapy (CDT) cascade therapy, but also provide a promising clinical strategy for postoperative treatment of oral and maxillofacial tumor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    葡萄膜黑色素瘤(UM)是一种主要影响成年人的眼癌,具有挑战性的诊断结果。这项研究致力于开发一种对近红外(NIR)辐射敏感的创新多功能纳米复合材料系统,用作非氧自由基产生剂和光热剂。所设计的系统结合了盐酸偶氮双异丁基咪唑啉(AIBI)与介孔硫化铜(MCuS)纳米颗粒。MCuS利用近红外激光能量诱导光热治疗,将光能转化为热能破坏癌细胞.同时,AIBI被近红外激光激活以产生烷基自由基,在剩余的癌细胞中诱导DNA损伤。这个独特的特征使设计的系统能够选择性地消除缺氧肿瘤微环境中的癌症。MCuS还有利于清除肿瘤微环境中过度表达的谷胱甘肽(GSH)。GSH通常消耗自由基并掩盖PDT效应。为了加强对癌细胞中AIBI释放的控制,1-十四烷醇(TD),相变材料,被引入到MCuS纳米颗粒的表面上以产生最终的AMPT纳米颗粒体系。体外和体内实验证实了AMPT的显著抗肿瘤功效。值得注意的是,该研究引入了UM的原位肿瘤模型,证明了在眼部系统内进行精确有效的靶向治疗的可行性。
    Uveal melanoma (UM) is an ocular cancer predominantly affecting adults, characterized by challenging diagnostic outcomes. This research endeavors to develop an innovative multifunctional nanocomposite system sensitive to near-infrared (NIR) radiation, serving as both a non-oxygen free-radical generator and a photothermal agent. The designed system combines azobis isobutyl imidazoline hydrochloride (AIBI) with mesoporous copper sulfide (MCuS) nanoparticles. MCuS harnesses NIR laser energy to induce photothermal therapy, converting light energy into heat to destroy cancer cells. Simultaneously, AIBI is activated by the NIR laser to produce alkyl radicals, which induce DNA damage in remaining cancer cells. This distinctive feature equips the designed system to selectively eliminate cancers in the hypoxic tumor microenvironment. MCuS is also beneficial to scavenge the overexpressed glutathione (GSH) in the tumor microenvironment. GSH generally consumes free radicals and hiders the PDT effect. To enhance control over AIBI release in cancer cells, 1-tetradecyl alcohol (TD), a phase-changing material, is introduced onto the surface of MCuS nanoparticles to create the final AMPT nanoparticle system. In vitro and in vivo experiments confirm the remarkable anti-tumor efficacy of AMPT. Notably, the study introduces an orthotopic tumor model for UM, demonstrating the feasibility of precise and effective targeted treatment within the ocular system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对用于不同生物医学应用的氧化石墨烯(GO)的兴趣日益增长,需要彻底检查其安全性。因此,迫切需要有关GO纳米颗粒如何影响健康细胞和器官的可靠数据。在目前的工作中,我们采用了一种综合方法来评估近红外(NIR)暴露下GO及其聚乙二醇修饰形式(GO-PEG)对几个生物学方面的影响。我们评估了孤立的青蛙心脏的收缩性,两种大鼠肝脏酶-线粒体ATP酶和二胺氧化酶(DAO)的活性,以及直接暴露于GO纳米颗粒后C2C12骨骼肌细胞中活性氧(ROS)的产生。目的是研究GO纳米颗粒在多个水平的影响-器官;细胞;和亚细胞-以提供对它们的作用的更广泛的理解。我们的数据表明,GO和GO-PEG对青蛙的心脏收缩性产生负面影响,诱导更强的心律失常收缩。它们增加了C2C12成肌细胞中的ROS产生,其作用在近红外照射后减弱。两种纳米颗粒在大鼠肝脏中显著刺激DAO活性,NIR辐照后这种效应的放大。GO不会使完整的大鼠肝脏线粒体解偶联,但会导致冷冻/解冻线粒体中ATPase活性的浓度依赖性下降。这项多方面的调查为GO在生物系统中的各种影响的潜力提供了至关重要的见解。
    The growing interest in graphene oxide (GO) for different biomedical applications requires thoroughly examining its safety. Therefore, there is an urgent need for reliable data on how GO nanoparticles affect healthy cells and organs. In the current work, we adopted a comprehensive approach to assess the influence of GO and its polyethylene glycol-modified form (GO-PEG) under near-infrared (NIR) exposure on several biological aspects. We evaluated the contractility of isolated frog hearts, the activity of two rat liver enzymes-mitochondrial ATPase and diamine oxidase (DAO), and the production of reactive oxygen species (ROS) in C2C12 skeletal muscle cells following direct exposure to GO nanoparticles. The aim was to study the influence of GO nanoparticles at multiple levels-organ; cellular; and subcellular-to provide a broader understanding of their effects. Our data demonstrated that GO and GO-PEG negatively affect heart contractility in frogs, inducing stronger arrhythmic contractions. They increased ROS production in C2C12 myoblasts, whose effects diminished after NIR irradiation. Both nanoparticles in the rat liver significantly stimulated DAO activity, with amplification of this effect after NIR irradiation. GO did not uncouple intact rat liver mitochondria but caused a concentration-dependent decline in ATPase activity in freeze/thaw mitochondria. This multifaceted investigation provides crucial insights into GOs potential for diverse implications in biological systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚多巴胺(PDA)作为一种具有优良生物相容性的类黑色素仿生材料,全光谱光吸收能力和抗氧化性能已广泛应用于生物医学领域。基于多巴胺(DA)的高反应性,利用新的策略来制造具有可控尺寸和改进性能的新型基于PDA的纳米生物材料是有价值和可取的。在这里,我们报道了一种简单的方法来合成吡咯掺杂的聚多巴胺-吡咯纳米颗粒(PDA-nPYNPs),具有可调的尺寸和增强的近红外(NIR)吸收能力,通过DA与PY在碱性乙醇/H2O/NH4OH溶液中的自氧化聚合。PDA-nPYNPs与PDA一样保持优异的生物相容性和表面反应性。通过调节添加的PY的体积,可以成功制造具有较小尺寸(<100nm)和在808nm处吸收强度比PDA高四倍的PDA-150PYNP。体外和体内实验有效地进一步证明PDA-150PYNP可以有效地抑制肿瘤生长并完全热消融肿瘤。据信,这些PY掺杂的PDA-nPYNPs可以是生物医学应用中的潜在光热(PT)剂。
    Polydopamine (PDA) as a melanin-like biomimetic material with excellent biocompatibility, full spectrum light absorption capacity and antioxidation property has been extensively applied in the biomedical field. Based on the high reactivity of dopamine (DA), exploiting new strategies to fabricate novel PDA-based nano-biomaterials with controllable size and improved performance is valuable and desirable. Herein, we reported a facile way to synthesize pyrrole-doped polydopamine-pyrrole nanoparticles (PDA-nPY NPs) with tunable size and enhanced near-infrared (NIR) absorption capacity through self-oxidative polymerization of DA with PY in an alkaline ethanol/H2O/NH4OH solution. The PDA-nPY NPs maintain excellent biocompatibility and surface reactivity as PDA. By regulating the volume of added PY, PDA-150PY NPs with a smaller size (<100 nm) and four-fold higher absorption intensity at 808 nm than that of PDA can be successfully fabricated. In vitro and in vivo experiments effectively further demonstrate that PDA-150PY NPs can effectively inhibit tumor growth and completely thermally ablate a tumor. It is believed that these PY doped PDA-nPY NPs can be a potential photothermal (PT) agent in biomedical application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新一代纳米级光敏剂具有改善的光热能力,这增加了光热治疗(PTT)在癌症治疗中的影响。金纳米星(GNS)有望比金纳米颗粒更有效且侵入性较小的PTT。然而,GNS和可见脉冲激光器的组合仍未被探索。本文报道了使用532nm纳秒脉冲激光和聚乙烯吡咯烷酮(PVP)覆盖的GNS通过位置特异性暴露杀死癌细胞。通过简单的方法合成了生物相容性GNS,并在FESEM下进行了表征,紫外可见光谱,XRD分析,和粒度分析。在玻璃培养皿中生长的癌细胞层上孵育GNS。纳秒脉冲激光照射细胞层,通过碘化丙啶(PI)染色证实细胞死亡。我们评估了单脉冲点照射和多脉冲激光扫描照射诱导细胞死亡的有效性。由于可以用纳秒脉冲激光准确选择细胞杀伤的部位,这种技术将有助于减少对靶细胞周围细胞的损害。
    A new generation of nanoscale photosensitizer agents has improved photothermal capabilities, which has increased the impact of photothermal treatments (PTTs) in cancer therapy. Gold nanostars (GNS) are promising for more efficient and less invasive PTTs than gold nanoparticles. However, the combination of GNS and visible pulsed lasers remains unexplored. This article reports the use of a 532 nm nanosecond pulse laser and polyvinylpyrrolidone (PVP)-capped GNS to kill cancer cells with location-specific exposure. Biocompatible GNS were synthesized via a simple method and were characterized under FESEM, UV-visible spectroscopy, XRD analysis, and particle size analysis. GNS were incubated over a layer of cancer cells that were grown in a glass Petri dish. A nanosecond pulsed laser was irradiated on the cell layer, and cell death was verified via propidium iodide (PI) staining. We assessed the effectiveness of single-pulse spot irradiation and multiple-pulse laser scanning irradiation in inducing cell death. Since the site of cell killing can be accurately chosen with a nanosecond pulse laser, this technique will help minimize damage to the cells around the target cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光动力疗法(PDT)通过产生活性氧(ROS)诱导免疫原性细胞死亡(ICD),使其成为癌症治疗的理想方法。然而,极低的氧气水平,产生的ROS的半衰期短,和通过静脉给药在肿瘤部位积累的有限的光敏剂是限制PDT进一步应用的主要原因。为了解决这些问题,我们将光敏剂卟啉(THPP)负载到仿生金纳米棒-介孔二氧化硅核壳纳米颗粒(Au-MSNNPs)中,制备Au@MSN/THPP@CMNPs。然后,我们将NPs与过氧化氢酶(CAT)一起接种到明胶甲基丙烯酰(GelMA)微凝胶基质中,形成由仿生纳米@微凝胶组成的Au@MSN-Ter/THPP@CM@GelMA/CAT微球。纳米粒子和仿生纳米@微凝胶表现出增强的光动力(PD)反应和优异的光热转化能力。此外,我们进一步将内质网(ER)靶向配体甲苯磺酰基乙二胺(Ter)缀合在Au-MSNPs的表面上。结果表明,Au@MSN-Ter/THPP@CMNPs和最终形成的Au@MSN-Ter/THPP@CM@GelMA/CAT仿生纳米@微凝胶均通过光动力反应诱导出精确而延长的内质网应力。在近红外(NIR)激光照射下,刺激了细胞膜上促凋亡钙网蛋白(CRT)的暴露,并增加了高迁移率族蛋白1(HMGB1)在SKOV3细胞中细胞核的释放。此外,通过微创注射递送的单剂量纳米@微凝胶通过PD和PT联合治疗在SKOV3细胞系来源的原位卵巢癌小鼠模型中产生了显著的抗肿瘤作用.本研究为增强PDT提供了新的策略,为卵巢癌的PD/PT协同治疗提供了新的方法。
    Photodynamic therapy (PDT) induces immunogenic cell death (ICD) by producing reactive oxygen species (ROS), making it an ideal method for cancer treatment. However, the extremely lower level of oxygen, short half-life of produced ROS, and limited photosensitizers accumulating in the tumor site via intravenous administration are the main reasons that limit the further application of PDT. To address these issues, we loaded the photosensitizer porphine (THPP) into biomimetic gold nanorod-mesoporous silica core-shell nanoparticles (Au-MSN NPs) to prepare Au@MSN/THPP@CM NPs. We then seeded the NPs together with catalase (CAT) into a gelatin methacryloyl (GelMA) microgel matrix to form Au@MSN-Ter/THPP@CM@GelMA/CAT microspheres consisting of biomimetic nano@microgel. The NPs and biomimetic nano@microgel exhibited enhanced photodynamic (PD) reaction and excellent photothermal conversion ability. Moreover, we further conjugated an endoplasmic reticulum (ER) targeting ligand Tosyl Ethylenediamine (Ter) on the surface of Au-MSN NPs. The results showed that both Au@MSN-Ter/THPP@CM NPs and the finally formed Au@MSN-Ter/THPP@CM@GelMA/CAT biomimetic nano@microgel induced precise and prolonged ER stress through photodynamic reactions, which stimulated the exposure of the proapoptotic calreticulin (CRT) on the cell membrane and increased the release of high mobility group box 1 (HMGB1) form the nucleus in SKOV3 cells under near-infrared (NIR) laser irradiation. Additionally, a single dose of the nano@microgel delivered through minimally invasive injection generated a significant anti-tumor effect in the SKOV3 cell line-derived orthotopic ovarian cancer mouse model through a PD and PT combination therapy. This study offers a new strategy for enhanced PDT and provides a PD/PT synergistic treatment method for ovarian cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人工关节感染(PJI)是一种破坏性的并发症,需要手术干预和长期的抗菌治疗。PJI的患病率正在上升,在美国,每年平均发病率为60,000例,预计每年的费用为18.5亿美元。PJI的潜在发病机制涉及细菌生物膜的形成,保护病原体免受宿主免疫反应和抗生素的影响,很难根除这种感染。植入物上的生物膜还对机械刷洗/擦洗去除方法具有抗性。由于生物膜的去除目前只能通过替换假体来实现,旨在根除生物膜同时保留植入物的疗法将彻底改变PJIs的管理。为了解决植入物上与生物膜相关感染相关的严重并发症,我们开发了一种基于水凝胶纳米复合材料系统的组合疗法,含有d-氨基酸(d-AA)和金纳米棒,其可以在生理温度下被递送并从溶液转变为凝胶状态,用于d-AA的持续释放和感染部位的光活化热处理。使用这种两步方法利用近红外光激活的水凝胶纳米复合材料系统进行热处理,在使用d-AA最初中断后,我们能够在体外成功证明在三维打印的Ti-6Al-4V合金植入物上生长的成熟金黄色葡萄球菌生物膜的完全根除。使用细胞测定的组合,计算机辅助扫描电子显微镜分析,和生物膜基质的共聚焦显微镜成像,使用我们的联合治疗,我们可以显示100%的生物膜根除。相比之下,我们只能看到使用清创术根除了25%的生物膜,抗生素,和植入物保留方法。此外,我们的基于水凝胶纳米复合材料的治疗方法在临床环境中具有适应性,并且能够抵抗医疗植入物上生物膜带来的慢性感染。
    Prosthetic joint infection (PJI) is a devastating complication requiring surgical intervention and prolonged antimicrobial treatment. The prevalence of PJI is on the rise, with an average incidence of 60,000 cases per year and a projected annual cost of $1.85 billion in the US. The underlying pathogenesis of PJI involves the formation of bacterial biofilms that protect the pathogen from the host immune response and antibiotics, making it difficult to eradicate such infections. Biofilms on implants are also resistant to mechanical brushing/scrubbing methods of removal. Since the removal of biofilms is currently only achievable by the replacement of the prosthesis, therapies aimed at eradicating biofilms while enabling retention of implants will revolutionize the management of PJIs. To address severe complications associated with biofilm-related infections on implants, we have developed a combination treatment that is based on a hydrogel nanocomposite system, containing d-amino acids (d-AAs) and gold nanorods, which can be delivered and transforms from a solution to a gel state at physiological temperature for sustained release of d-AAs and light-activated thermal treatment of infected sites. Using this two-step approach to utilize a near-infrared light-activated hydrogel nanocomposite system for thermal treatment, following initial disruption with d-AAs, we were able to successfully demonstrate in vitro the total eradication of mature Staphylococcus aureus biofilms grown on three-dimensional printed Ti-6Al-4V alloy implants. Using a combination of cell assays, computer-aided scanning electron microscopy analyses, and confocal microscopy imaging of the biofilm matrix, we could show 100% eradication of the biofilms using our combination treatment. In contrast, we were only able to see 25% eradication of the biofilms using the debridement, antibiotics, and implant retention method. Moreover, our hydrogel nanocomposite-based treatment approach is adaptable in the clinical setting and capable of combating chronic infections brought about by biofilms on medical implants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号