photothermal catalysis

光热催化
  • 文章类型: Journal Article
    设计具有广泛光吸收的强大光催化剂,有效的电荷分离,和足够的活性位点对于实现有效的太阳能转换至关重要。然而,通过单一材料调制方法同时实现这些目标提出了挑战。这里,设计并制造了2D超薄富氧空位(Ov)的Bi2W0.2Mo0.8O6固溶体光催化剂,以通过组件和结构优化来解决这一难题。具体来说,具有超薄结构的固溶体的构造最初促进了光诱导电子-空穴对的分离,而Ov的引入加强了这种分离。同时,Ov的存在将光吸收扩展到NIR区域,触发光热效应,进一步增强电荷分离并加速氧化还原反应。因此,Ov-Bi2W0.2Mo0.8O6中的光致电荷载流子通过2D固溶体的协同作用逐步分离,OV,和太阳能供暖。此外,OV的引入暴露了用作反应性路易斯酸位点的表面金属位点,促进甲苯的吸附和活化。因此,设计的Ov-Bi2W0.2Mo0.8O6揭示了在宽光谱下2445µmolg-1h-1的光热催化甲苯氧化速率增强,而没有额外的热量输入。性能是Bi2WO6和Bi2MoO6纳米片的9.0和3.9倍,分别。
    Designing robust photocatalysts with broad light absorption, effective charge separation, and sufficient reactive sites is critical for achieving efficient solar energy conversion. However, realizing these aims simultaneously through a single material modulation approach poses a challenge. Here, a 2D ultrathin oxygen vacancy (Ov)-rich Bi2W0.2Mo0.8O6 solid solution photocatalyst is designed and fabricated to tackle the dilemma through component and structure optimization. Specifically, the construction of a solid solution with ultrathin structure initially facilitates the separation of photoinduced electron-hole pairs, while the introduction of Ov strengthens such separation. In the meantime, the presence of Ov extends light absorption to the NIR region, triggering a photothermal effect that further enhances the charge separation and accelerates the redox reaction. As such, photoinduced charge carriers in the Ov-Bi2W0.2Mo0.8O6 are separated step by step via the synergistic action of 2D solid solution, OV, and solar heating. Furthermore, the introduction of OV exposes surface metal sites that serve as reactive Lewis acid sites, promoting the adsorption and activation of toluene. Consequently, the designed Ov-Bi2W0.2Mo0.8O6 reveals an enhanced photothermal catalytic toluene oxidation rate of 2445 µmol g-1 h-1 under a wide spectrum without extra heat input. The performance is 9.0 and 3.9 times that of Bi2WO6 and Bi2MoO6 nanosheets, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了进一步降低常规热催化氧化系统的能耗,提高污染物的降解效率,本文以丙烷为代表VOCs的模拟污染物,构建了光热协同催化氧化(PTSCO)体系,然后采用酸活化法制备了改性的α-MnO2催化剂,在PTSCO中用于丙烷的催化氧化。酸浓度合适的α-MnO2具有优异的低温还原性,丰富的活性氧,快速的氧迁移速率和大量的酸位点。最佳催化剂,H0.05-MnO2,在PTSCO系统中的T90为204°C,其相对于α-MnO2(T90为235°C)降低超过30°C。此外,H0.05-MnO2表现出优异的耐水性和长期稳定性(T=45h)。通过研究PTSCO体系中丙烷降解动力学和催化剂对丙烷降解的构象关系,表明光催化和热催化相结合可以改善丙烷降解。此外,提出了PTSCO系统中光催化和热催化之间的多途径协同机制。该工作为高性能催化剂的制备和丙烷的催化降解提供了理论依据。
    In order to further reduce the energy consumption of the conventional thermal catalytic oxidation system and improve the degradation efficiency of pollutants, photothermal synergistic catalytic oxidation (PTSCO) system was constructed in this paper with propane as simulated pollutant representing VOCs, and then the modified α-MnO2 catalysts were prepared by using the acid activation method, which were used for the catalytic oxidation of propane in PTSCO. The α-MnO2 with appropriate acid concentration possessed excellent low-temperature reducibility, abundant active oxygen species, fast oxygen migration rate and a large number of acid sites. The optimal catalyst, H0.05-MnO2, had a T90 of 204 °C in the PTSCO system, which reduced by more than 30 °C relative to the α-MnO2 (T90 of 235 °C). Moreover, H0.05-MnO2 demonstrated excellent water resistance and long-term stability (T = 45 h). It was shown that the combination of photocatalysis and thermocatalysis can improve propane degradation by examining the kinetics of propane degradation in the PTSCO system and the conformational relationship of propane degradation by catalysts. Furthermore, a multi-pathway synergistic mechanism between photocatalysis and thermocatalysis in the PTSCO system was proposed. This work provided a theoretical basis for the preparation of high-performance catalysts and the catalytic degradation of propane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于非均相催化中结垢关系的内在约束,推进能源密集型Haber-Bosch工艺面临重大挑战。在这里,我们报道了一种弯曲“跷跷板效应”来调节定制的α-Fe金属材料(α-Fe-110s)上的比例关系的方法,实现1260μmolg催化剂-1h-1的高效光驱动热催化氨合成速率,无需额外加热。具体来说,α-Fe-110s的热催化活性通过新型阶梯状{110}表面显著增强,与具有助催化剂的商业熔融铁催化剂相比,在350°C下表现出3.8倍的增加。光诱导的热电子转移进一步加速了二氮的解离和氢化,有效地克服了同一站点上缩放关系的局限性。因此,在相同的辐照温度下,α-Fe-110s的产氨率进一步提高了30倍。这项工作设计了一种有效且可持续的氨合成系统,并为调节多相催化中的结垢关系提供了一种新颖的方法。
    Advancing the energy-intensive Haber-Bosch process faces significant challenges due to the intrinsic constraints of scaling relations in heterogeneous catalysis. Herein, we reported an approach of bending the \"seesaw effect\" to regulate the scaling relations over a tailored α-Fe metallic material (α-Fe-110s), realizing highly efficient light-driven thermal catalytic ammonia synthesis rate of 1260 μmol gcatalyst-1 h-1 without additional heating. Specifically, the thermal catalytic activity of α-Fe-110s was significantly enhanced by the novel stepped {110} surface, exhibiting a 3.8-fold increase compared to the commercial fused-iron catalyst with promoters at 350 °C. The photo-induced hot electron transfer further accelerates the dinitrogen dissociation and hydrogenation simultaneously, effectively overcoming the limitation of scaling relation over identical sites. Consequently, the ammonia production rate of α-Fe-110s was further enhanced by 30 times at the same temperature with irradiation. This work designs an efficient and sustainable system for ammonia synthesis and provides a novel approach for regulating the scaling relations in heterogeneous catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发具有优异的光热转换效率的分层碳纳米笼,连同它们独特的结构,形态学,和电子特性,在光热应用中可以为不同领域的长期挑战提供有效的解决方案。这里,我们证明了发现原始和氮掺杂的分层碳纳米笼作为高负载的优越支持,小尺寸Ru颗粒对增强光热CO2催化作用。在2.4W·cm-2光照下,在没有外部加热的情况下,对于分级的氮掺杂碳纳米笼负载的Ru团簇,在流动反应器中达到了3.1mol·gRu-1·h-1的创纪录的CO生产率,选择性超过90%。详细的研究表明,增强的性能源于纳米笼载体的强宽带阳光吸收和有效的光热转化,以及亚2nmRu颗粒的优异的固有催化反应性。我们的研究揭示了分级碳纳米笼在光热催化中的巨大潜力,可以减少各种工业化学过程的化石燃料消耗,并激发了对其开发其他苛刻的光热应用的兴趣。
    The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO2 catalysis. A record CO production rate of 3.1 mol·gRu-1·h-1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm-2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电池行业的快速发展带来了大量的废旧电池污染。如何实现废旧电池的高价值利用是一个亟待解决的问题。在这里,首先使用碳热还原法从废旧锂离子电池(LIBs)中回收钴和钛化合物(LTCO),通过微波水热技术制备了等离子凹凸棒石/Co(Ti)Ox(H-ATP/Co(Ti)Ox)纳米复合材料。H-ATP具有大的比表面积和足够的活性位点来捕获CO2分子。生物炭不仅将废弃LIB的尖晶石相还原成Co3O4和TiO2等金属氧化物,而且增加了载体的分离和传输,从而加速CO2的吸附和还原。此外,H-ATP/Co(Ti)Ox在可见至近红外区域表现出局域表面等离子体共振效应(LSPR),释放出高能热电子,提高催化剂的表面温度,进一步改善CO2的催化还原,CO产率高达14.7μmol·g-1·h-1。目前的工作证明了通过利用天然矿物和废电池来减少二氧化碳的潜力。
    The rapid development of the battery industry has brought about a large amount of waste battery pollution. How to realize the high-value utilization of waste batteries is an urgent problem to be solved. Herein, cobalt and titanium compounds (LTCO) were firstly recovered from spent lithium-ion batteries (LIBs) using the carbon thermal reduction approach, and plasmonic attapulgite/Co(Ti)Ox (H-ATP/Co(Ti)Ox) nanocomposites were prepared by the microwave hydrothermal technique. H-ATP had a large specific surface area and enough active sites to capture CO2 molecules. The biochar not only reduced the spinel phase of waste LIBs into metal oxides including Co3O4 and TiO2 but also increased the separation and transmission of the carriers, thereby accelerating the adsorption and reduction of CO2. In addition, H-ATP/Co(Ti)Ox exhibited a localized surface plasmon resonance effect (LSPR) in the visible to near-infrared region and released high-energy hot electrons, enhancing the surface temperature of the catalyst and further improving the catalytic reduction of CO2 with a high CO yield of 14.7 μmol·g-1·h-1. The current work demonstrates the potential for CO2 reduction by taking advantage of natural mineral and spent batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    如今,降低不断上升的二氧化碳(CO2)以减少温室效应变得越来越紧迫。幸运的是,利用取之不尽、用之不竭的太阳能作为驱动力来操纵环加成反应是一种理想的策略,其原子效率为100%。这项工作代表了利用具有原子色散的稀土金属Tb的首次尝试,在相互连接的碳空心球上构建了与4个N原子和2B原子配位的Tb结构。缺电子B的引入降低了Tb的电子密度,从而提高路易斯酸度并促进开环反应的发生。机理探索阐明了TbN4B2/C是一种光热协同催化剂,光生电子和Tb的强路易斯酸性位点的联合作用降低了速率决定步骤的自由能,然后将环状碳酸酯的收率提高到739mmolg-1h-1。
    Nowadays, it is becoming increasingly urgent to lower the escalating carbon dioxide (CO2) to reduce greenhouse effect. Fortunately, it is an ideal strategy by using the inexhaustible solar energy as the driving force to manipulate the cycloaddition reaction, the atomic efficiency of which is 100 %. This work represents the first attempt on utilization of rare-earth metal Tb with atomic dispersion, and the structure of Tb coordinated with 4 N-atoms and 2B-atoms was constructed on interconnected carbon hollow spheres. The introduction of electron-deficient B reduces the electron density of Tb, thereby boosting Lewis acidity and promoting the occurrence of ring-opening reaction. The mechanism exploration enunciates that TbN4B2/C is a photothermal synergistic catalyst, the combined action of photogenerated electrons and strong Lewis acidic site of Tb reduces the free energy of the rate-determining step, and then improving the yield of cyclic carbonate up to 739 mmol g-1h-1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可持续木质纤维素生物质的选择性加氢脱氧(HDO)在将生物质转化为高价值燃料和化学品中起着关键作用。然而,用于生物质升级的HDO总是需要高温和高氢气(H2)压力。光热催化已被认为是在温和条件下促进化学反应同时保持优异选择性的有效方法。在这里,我们报告了钯修饰的缺陷氧化钨(Pd/WO3-x)催化剂的设计,该催化剂具有增强的光热催化性能,可用于香草醛的高效HDO。通过溶剂热/原位还原两步策略合成了Pd/WO3-x纳米花,它们在宽范围(200-1100nm)内表现出明显的光吸收,高光热转化和高效的电荷分离效率。在模拟阳光照射下(0.3Wcm-2),Pd/WO3-x的最大香草醛转化率高达86.8%,2-甲氧基-4-甲基苯酚(MMP)选择性为100%,明显高于(香草醛转化率=33.1%,MMP选择性=100%)在相同温度的油浴中。这种在阳光下更高的转换效率和选择性应该来自热电子和光热加热的协同整合,两者都来自WO3-x中的局域表面等离子体共振(LSPR)。重要的是,Pd/WO3-x催化剂即使在5个循环后仍表现出良好的稳定性和对MMP的高选择性。这项工作可能为光热催化剂的发展和在温和条件下实现光热催化生物质转化提供了新的观点。
    The selective hydrodeoxygenation (HDO) of sustainable lignocellulosic biomass plays a pivotal role in the conversion of biomass into high-value fuels and chemicals. Nevertheless, HDO for biomass upgrading always demands high temperatures and high hydrogen (H2) pressure. Photothermal catalysis has been recognized as an effective approach for boosting chemical reactions under mild conditions while maintaining superior selectivity. Herein, we report the design of palladium-decorated defective tungsten oxide (Pd/WO3-x) catalysts with enhanced photothermal catalytic performances for the efficient HDO of vanillin. Pd/WO3-x nanoflowers have been synthesized through a solvothermal/in-situ reduction two-step strategy, and they exhibit notable photoabsorption in a wide range (200-1100 nm), high photothermal conversion and efficient charge separation efficiency. Under simulated sunlight irradiation (0.3 W cm-2), Pd/WO3-x exhibits a maximum vanillin conversion up to 86.8 % with a 2-methoxy-4-methylphenol (MMP) selectivity of 100 %, which is obviously higher than that (vanillin conversion = 33.1 %, MMP selectivity = 100 %) in the oil bath at the same temperature. Such higher conversion efficiency and selectivity under sunlight should result from the synergistic integration of hot electrons and photothermal heating, both of which are derived from localized surface plasmon resonance (LSPR) in WO3-x. Importantly, Pd/WO3-x catalyst demonstrates good stability and high selectivity to MMP even after 5 cycles. This work may offer a novel viewpoint on the advancement of photothermal catalysts and the realization of photothermal catalytic biomass conversion under mild conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    低太阳能利用效率和严重的电荷复合仍然是光催化系统的主要挑战。在这里,通过两步沉积法成功制备了中空核壳Au/g-C3N4@Ag3PO4光热纳米反应器。受益于独特的中空核壳异质结构诱导的高效光谱利用和快速电荷分离,Au/g-C3N4@Ag3PO4的H2释放速率是原始g-C3N4的16.9倍,四环素的降解效率提高了88.1%。增强的催化性能可以归因于中空核壳结构上的有序电荷运动和局部高温环境,有效地加速了载体分离和化学反应动力学。这项工作突出了空间约束效应在光热催化中的重要作用,并为开发下一代高效光热催化剂提供了有希望的策略。
    Low solar energy utilization efficiency and serious charge recombination remain major challenges for photocatalytic systems. Herein, a hollow core-shell Au/g-C3N4@Ag3PO4 photothermal nanoreactor is successfully prepared by a two-step deposition method. Benefit from efficient spectral utilization and fast charge separation induced by the unique hollow core-shell heterostructure, the H2 evolution rate of Au/g-C3N4@Ag3PO4 is 16.9 times that of the pristine g-C3N4, and the degradation efficiency of tetracycline is increased by 88.1%. The enhanced catalytic performance can be attributed to the ordered charge movement on the hollow core-shell structure and a local high-temperature environment, which effectively accelerates the carrier separation and chemical reaction kinetics. This work highlights the important role of the space confinement effect in photothermal catalysis and provides a promising strategy for the development of the next generation of highly efficient photothermal catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们报告了一种溶剂热法,用于合成表面固定有Co单原子和Ni团簇的富含氧空位的ZrO2光催化剂。这种催化剂表现出优越的性能,用于还原H2O蒸气中的CO2,CO产率达到663.84μmolg-1h-1,选择性为99.52%。太阳能到化学能的总转换效率高达0.372‰,这是最高的报告值之一。的成功,一方面,取决于Co单原子和Ni团簇的扩展光谱吸收,并作为CO2还原和H2O解离的双活性中心,分别;另一方面,这归因于集中太阳辐射引起的增强的光电和热效应。我们证明了通过单原子Co的d轨道与H2O的分子轨道的杂化形成中间杂质态,在催化剂上启用可见光驱动的激发。此外,Ni团簇在改变CO2的吸附构型中起着至关重要的作用,局部表面等离子体共振效应增强了可见-近红外光诱导的CO2的活化和解离。这项研究为双重助催化剂对高效光热耦合和表面氧化还原反应的协同作用提供了有价值的见解。
    We report a solvothermal method for the synthesis of an oxygen vacancy-enriched ZrO2 photocatalyst with Co single atoms and Ni clusters immobilized on the surface. This catalyst presents superior performance for the reduction of CO2 in H2O vapor, with a CO yield reaching 663.84 μmol g-1 h-1 and a selectivity of 99.52%. The total solar-to-chemical energy conversion efficiency is up to 0.372‰, which is among the highest reported values. The success, on one hand, depends on the Co single atoms and Ni clusters for both extended spectrum absorption and serving as dual-active centers for CO2 reduction and H2O dissociation, respectively; on the other hand, this is attributed to the enhanced photoelectric and thermal effect induced by concentrated solar irradiation. We demonstrate that an intermediate impurity state is formed by the hybridization of the d-orbital of single-atom Co with the molecular orbital of H2O, enabling visible-light-driven excitation over the catalyst. In addition, Ni clusters play a crucial role in altering the adsorption configuration of CO2, with the localized surface plasmon resonance effect enhancing the activation and dissociation of CO2 induced by visible-near-infrared light. This study provides valuable insights into the synergistic effect of the dual cocatalyst toward both efficient photothermal coupling and surface redox reactions for solar CO2 reduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二氧化碳,温室气体的成员,为所有生物物种维持一个可容忍的环境做出了重大贡献。然而,随着现代社会的发展和化石燃料的利用,大气中的二氧化碳浓度增加到400ppm,造成了严重的温室效应。因此,将二氧化碳转化为有价值的化学物质是非常需要的,尤其是可再生太阳能,用光热催化的方式显示出巨大的潜力。在这次审查中,讨论了光热CO2转化的最新进展,包括催化剂的设计,机制分析,反应堆工程,以及相应的技术经济分析。提供了未来调查和人为碳循环的指南。本文受版权保护。保留所有权利。
    Carbon dioxide (CO2), a member of greenhouse gases, contributes significantly to maintaining a tolerable environment for all living species. However, with the development of modern society and the utilization of fossil fuels, the concentration of atmospheric CO2 has increased to 400 ppm, resulting in a serious greenhouse effect. Thus, converting CO2 into valuable chemicals is highly desired, especially with renewable solar energy, which shows great potential with the manner of photothermal catalysis. In this review, recent advancements in photothermal CO2 conversion are discussed, including the design of catalysts, analysis of mechanisms, engineering of reactors, and the corresponding techno-economic analysis. A guideline for future investigation and the anthropogenic carbon cycle are provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号