photocage

photage
  • 文章类型: Journal Article
    光学刺激和抑制神经元的能力彻底改变了神经科学研究。这里,我们提出了一个直接的,强力,用于光学沉默神经元的用户友好的化学方法。我们已经提供了毒素(STX),一种自然产生的麻痹剂,通过用先前未公开的硝基苄基衍生的光可裂解基团进行化学保护而暂时惰性。暴露笼中的毒素,STX-bpc,一个短暂的(5毫秒)光脉冲效应快速释放一个有效的STX衍生物和瞬态,电压门控钠通道(Navs)的空间精确阻断。我们证明了STX-bpc在参数化操纵哺乳动物神经元和大脑切片中动作电位的功效。此外,我们通过解剖幼体斑马鱼的感觉诱发游泳,证明了该试剂沉默神经活动的有效性。STX-bpc的光解串是一种简单的非侵入性方法,可逆,时空精确的神经沉默,而不需要遗传通路,从而消除了比较研究的障碍。
    The ability to optically stimulate and inhibit neurons has revolutionized neuroscience research. Here, we present a direct, potent, user-friendly chemical approach for optically silencing neurons. We have rendered saxitoxin (STX), a naturally occurring paralytic agent, transiently inert through chemical protection with a previously undisclosed nitrobenzyl-derived photocleavable group. Exposing the caged toxin, STX-bpc, to a brief (5 ms) pulse of light effects rapid release of a potent STX derivative and transient, spatially precise blockade of voltage-gated sodium channels (NaVs). We demonstrate the efficacy of STX-bpc for parametrically manipulating action potentials in mammalian neurons and brain slice. Additionally, we show the effectiveness of this reagent for silencing neural activity by dissecting sensory-evoked swimming in larval zebrafish. Photo-uncaging of STX-bpc is a straightforward method for non-invasive, reversible, spatiotemporally precise neural silencing without the need for genetic access, thus removing barriers for comparative research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然细胞色素P450(CYP;P450)酶通常与有机异源物质和药物的代谢或有机信号分子的生物合成有关,它们还受到各种无机物种的影响。金属纳米颗粒,集群,离子,复合物可以改变CYP的表达,修饰与还原酶伴侣的酶相互作用,并作为直接抑制剂。这个经常被忽视的话题在这里回顾,强调理解这些相互作用的结构和生理化学基础。有趣的是,虽然有机金属和配位化合物都可以作为有效的CYP抑制剂,几乎没有证据表明CYPs会代谢无机化合物,建议一种潜在的替代方法来逃避与快速修饰和消除医学上有用的化合物相关的问题。
    While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    开发同时诊断和杀死癌细胞的探针至关重要,但具有挑战性。本文介绍了一种新型罗丹明B荧光探针的设计与合成。设计策略涉及利用抗癌药物(美法仑)与荧光基团(HRhod-OH)结合,形成HRhod-MeL,它是非荧光的。然而,当暴露于癌细胞的高水平活性氧(ROS)时,HRhod-MeL转化为红色发光光子库(Rhod-MeL),并选择性地积累在癌细胞的线粒体中,where,当用绿光(556nm)激活时,抗癌药物发布。Photocage可提高抗癌药物的疗效,并能够精确诊断和杀死癌细胞。因此,所制备的Photocage可以检测癌细胞并原位释放抗癌药物,为开发前药提供了新的方法。
    Developing probes for simultaneous diagnosis and killing of cancer cells is crucial, yet challenging. This article presents the design and synthesis of a novel Rhodamine B fluorescence probe. The design strategy involves utilizing an anticancer drug (Melphalan) to bind with a fluorescent group (HRhod-OH), forming HRhod-MeL, which is non-fluorescent. However, when exposed to the high levels of reactive oxygen species (ROS) of cancer cells, HRhod-MeL transforms into a red-emitting Photocage (Rhod-MeL), and selectively accumulates in the mitochondria of cancer cells, where, when activated with green light (556 nm), anti-cancer drugs released. The Photocage improve the efficacy of anti-cancer drugs and enables the precise diagnosis and killing of cancer cells. Therefore, the prepared Photocage can detect cancer cells and release anticancer drugs in situ, which provides a new method for the development of prodrugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癌细胞需要更多的葡萄糖供应,主要是由于它们的有氧糖酵解,被称为Warburg效应。葡萄糖转运蛋白1(GLUT1)的葡萄糖转运是葡萄糖摄取的限速步骤,使其成为潜在的癌症治疗靶点。然而,GLUT1广泛表达并在多种细胞中执行关键功能,其不加区分的抑制作用会引起严重的副作用。在这项研究中,我们设计并合成了一种光老化的GLUT1抑制剂WZB117-PPG,以时空可控的方式抑制癌细胞的生长.WZB117-PPG在可见光照射下对癌细胞表现出显著的光解效率和显著的细胞毒性,副作用最小。确保其作为潜在癌症治疗的安全性。此外,我们的定量蛋白质组学数据描绘了葡萄糖剥夺下癌细胞反应的全面肖像,强调细胞通过坏死而不是凋亡死亡的机制。我们认为我们的研究提供了一种潜在可靠的癌症治疗策略,并且可以用作研究营养剥夺相关应激反应的时空可控触发因素。
    Cancer cells need a greater supply of glucose mainly due to their aerobic glycolysis, known as the Warburg effect. Glucose transport by glucose transporter 1 (GLUT1) is the rate-limiting step for glucose uptake, making it a potential cancer therapeutic target. However, GLUT1 is widely expressed and performs crucial functions in a variety of cells, and its indiscriminate inhibition will cause serious side effects. In this study, we designed and synthesized a photocaged GLUT1 inhibitor WZB117-PPG to suppress the growth of cancer cells in a spatiotemporally controllable manner. WZB117-PPG exhibited remarkable photolysis efficiency and substantial cytotoxicity toward cancer cells under visible light illumination with minimal side effects, ensuring its safety as a potential cancer therapy. Furthermore, our quantitative proteomics data delineated a comprehensive portrait of responses in cancer cells under glucose deprivation, underlining the mechanism of cell death via necrosis rather than apoptosis. We reason that our study provides a potentially reliable cancer treatment strategy and can be used as a spatiotemporally controllable trigger for studying nutrient deprivation-related stress responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这个账户中,我们概述了最近开发的合成方法产生的应用,该方法提供了在中心链取代的七甲基花青(Cy7)。沿着花青链以不同的取代模式容易地引入和操纵各种取代基的能力使得能够合理地调整光物理和光化学性质。事实证明,对结构-性质关系进行这种控制在花青染料领域产生了重大影响,并在不同领域的许多新兴应用中得到了迅速利用。包括荧光探针,生物传感器,染料敏化上转换纳米粒子,花青和光的光分枝。虽然这种方法开启了许多新的途径,为了充分利用花青的潜力,许多合成挑战仍有待克服,我们提供了一个简短的视角,在本手稿的末尾总结了它们。
    In this account, we provide an overview of the applications that arose from the recently developed synthetic methodology that delivers heptamethine cyanines (Cy7) substituted at the central chain. The ability to easily introduce and manipulate various substituents in different substitution patterns along the cyanine chain enabled rational tailoring of the photophysical and photochemical properties. Exercising this control over the structure-property relationship proved to have a substantial impact in the field of cyanine dyes and was swiftly harnessed in a number of emerging applications in distinct areas, including fluorescent probes, biosensors, dye-sensitized upconversion nanoparticles, phototruncation of cyanines and photocages. While this method unlocked a number of new avenues, many synthetic challenges remain to be conquered in order to fully capitalize on the potential of cyanines, and we provide a short perspective that summarizes them at the end of this manuscript.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞间异质性在正常生理环境和异常致病条件下广泛发生。进行了几次尝试将时空信息耦合到微环境中的细胞状态,以破译异质性的原因和影响。此外,时空操纵可以通过使用光老化/光活化分子来实现。这里,我们提供了一个平台,通过多个光老化的探针和自制的光掩模对邻近细胞的差异蛋白表达进行时空分析。我们成功地建立了细胞间异质性(光活化的ROS触发),并绘制了靶标(直接受ROS影响的细胞)和旁观者(周围细胞),通过总蛋白质组学和半胱氨酸组学分析进一步表征。在总蛋白质组和半胱氨酸组中,旁观者和靶细胞之间显示出不同的蛋白质谱。我们的策略应该扩展时空作图的工具包,以阐明细胞间的异质性。
    Intercellular heterogeneity occurs widely under both normal physiological environments and abnormal disease-causing conditions. Several attempts to couple spatiotemporal information to cell states in a microenvironment were performed to decipher the cause and effect of heterogeneity. Furthermore, spatiotemporal manipulation can be achieved with the use of photocaged/photoactivatable molecules. Here, we provide a platform to spatiotemporally analyze differential protein expression in neighboring cells by multiple photocaged probes coupled with homemade photomasks. We successfully established intercellular heterogeneity (photoactivable ROS trigger) and mapped the targets (directly ROS-affected cells) and bystanders (surrounding cells), which were further characterized by total proteomic and cysteinomic analysis. Different protein profiles were shown between bystanders and target cells in both total proteome and cysteinome. Our strategy should expand the toolkit of spatiotemporal mapping for elucidating intercellular heterogeneity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胰高血糖素样肽-1受体(GLP1R)是肽激素的广泛表达靶标,在能量和葡萄糖稳态中具有重要作用,以及重磅炸弹减肥药司马鲁肽和利拉鲁肽。尽管它有很大的临床相关性,研究具有高时空分辨率的这种受体的精确激活动力学的工具是有限的。这里,我们在人类GLP1R中引入了一种基于循环置换绿色荧光蛋白工程的新型基因编码传感器,名为GLPLight1。我们证明,来自GLPLight1的荧光信号以高灵敏度(最大ΔF/F0=528%)和时间分辨率(τON=4.7s)准确地报告了响应药理学配体的预期受体构象激活。我们进一步证明了GLPLight1对胰高血糖素样肽-1(GLP-1)衍生物显示出与天然受体观察到的相当的应答。使用GLPBlight1,我们建立了一种全光测定法,以表征新型的光老化的GLP-1衍生物(光GLP1)并证明GLP1R激活的光学控制。因此,这里介绍的新的全光学工具包增强了我们研究高时空分辨率GLP1R激活的能力.
    The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在合成生物学中,光对蛋白质的人工控制越来越受到人们的关注,因为它能够对下游分子过程进行时空调节。这种精确的光控制可以通过将光敏非规范氨基酸(ncAA)定点掺入蛋白质中来建立。产生所谓的光氧蛋白。可以使用ncAA来改造光氧化酶蛋白,所述ncAA在照射时促进其活性的不可逆激活或可逆调节。在这一章中,我们提供了一个工程过程的一般概述,基于目前的方法学状态的最先进的,以获得人工光控制的蛋白质使用ncAAso-硝基苄基-O-酪氨酸作为例子的光老化ncAAs(不可逆),和苯丙氨酸-4'-偶氮苯作为光可切换ncAAs(可逆)的实例。因此,我们专注于初始设计以及体外光氧化酶蛋白的生产和表征。最后,我们概述了以变构酶复合物咪唑甘油磷酸合酶和色氨酸合酶为例,在稳态和非稳态条件下的光控分析。
    In synthetic biology, the artificial control of proteins by light is of growing interest since it enables the spatio-temporal regulation of downstream molecular processes. This precise photocontrol can be established by the site-directed incorporation of photo-sensitive non-canonical amino acids (ncAAs) into proteins, which generates so-called photoxenoproteins. Photoxenoproteins can be engineered using ncAAs that facilitate the irreversible activation or reversible regulation of their activity upon irradiation. In this chapter, we provide a general outline of the engineering process based on the current methodological state-of-the-art to obtain artificial photocontrol in proteins using the ncAAs o-nitrobenzyl-O-tyrosine as example for photocaged ncAAs (irreversible), and phenylalanine-4\'-azobenzene as example for photoswitchable ncAAs (reversible). We thereby focus on the initial design as well as the production and characterization of photoxenoproteins in vitro. Finally, we outline the analysis of photocontrol under steady-state and non-steady-state conditions using the allosteric enzyme complexes imidazole glycerol phosphate synthase and tryptophan synthase as examples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阿片类药物是有效且广泛使用的疼痛管理药物,尽管还拥有严重的债务,加剧了阿片类药物危机。阿片类药物的药理特性主要来自阿片受体的激动或拮抗作用,但是特定的化合物可能会产生额外的影响,阿片受体,或独立的目标。阿片类药物的研究,它们的受体,和补救战略的制定受益于阿片类药物作为化学工具的衍生化。虽然这些研究主要集中在阿片类药物受体的背景下,这些化学工具也可能在描绘独立于阿片受体的机制中发挥作用.在这次审查中,我们描述了阿片类衍生物作为化学工具的开发和应用的最新进展,并强调了未来的机会。
    The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Orexin神经肽在大脑中执行重要的神经调节功能,然而,缺乏精确控制内源性食欲素信号激活的工具。这里,我们通过C端光老化策略开发了光老化的食欲素B(photo-OXB)。我们表明,photo-OXB无法在黑暗中激活其同源受体,但在用UV-可见光(UV-vis)光(370-405nm)照射时释放功能活性的天然食欲素B。我们建立了一种将photo-OXB与基因编码的orexin生物传感器相结合的全光学测定法,并用它来表征photo-OXB解套的效率和空间分布。最后,我们证明了光-OXB能够在体外和体外以良好的时间精度对食欲素信号进行光学控制。因此,我们的光老化策略和photo-OXB通过引入肽信号和生理功能的光学控制方法来推进化学生物工具包。
    Orexin neuropeptides carry out important neuromodulatory functions in the brain, yet tools to precisely control the activation of endogenous orexin signaling are lacking. Here, we developed a photocaged orexin-B (photo-OXB) through a C-terminal photocaging strategy. We show that photo-OXB is unable to activate its cognate receptors in the dark but releases functionally active native orexin-B upon uncaging by illumination with UV-visible (UV-vis) light (370-405 nm). We established an all-optical assay combining photo-OXB with a genetically encoded orexin biosensor and used it to characterize the efficiency and spatial profile of photo-OXB uncaging. Finally, we demonstrated that photo-OXB enables optical control over orexin signaling with fine temporal precision both in vitro and ex vivo. Thus, our photocaging strategy and photo-OXB advance the chemical biological toolkit by introducing a method for the optical control of peptide signaling and physiological function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号