periplasm

周质
  • 文章类型: Journal Article
    维持脂质不对称(Mla)途径是在所有革兰氏阴性细菌中发现的多组分系统,有助于毒力,囊泡起泡和外膜屏障功能的保存。它通过从外膜的外叶中去除异位脂质并通过三个蛋白质组装体返回内膜:MlaA-OmpC复合物,位于外膜内;周质磷脂穿梭蛋白,MlaC;和内膜ABC转运复合物,Mlafedb,提议成为结构独特的ABC超家族的创始成员。虽然每个组件的功能都很完善,磷脂如何在组分之间交换仍然未知。这是我们对道路功能的理解的主要障碍,特别是,ATP酶活性对MlaFEDB的作用尚不清楚。这里,我们报道了大肠杆菌MlaC与MlaD六聚体在两个不同化学计量中的复合物结构。利用体内互补测定,基于荧光的体外转运试验,和分子动力学模拟,我们确认关键残留物,确定MlaDβ6-β7环对MlaCD功能至关重要。我们还提供了磷脂在MlaD六聚体的C末端螺旋之间通过到达中心孔的证据,深入了解MlaC和MlaD之间GPL转移的轨迹。
    The Maintenance of Lipid Asymmetry (Mla) pathway is a multicomponent system found in all gram-negative bacteria that contributes to virulence, vesicle blebbing and preservation of the outer membrane barrier function. It acts by removing ectopic lipids from the outer leaflet of the outer membrane and returning them to the inner membrane through three proteinaceous assemblies: the MlaA-OmpC complex, situated within the outer membrane; the periplasmic phospholipid shuttle protein, MlaC; and the inner membrane ABC transporter complex, MlaFEDB, proposed to be the founding member of a structurally distinct ABC superfamily. While the function of each component is well established, how phospholipids are exchanged between components remains unknown. This stands as a major roadblock in our understanding of the function of the pathway, and in particular, the role of ATPase activity of MlaFEDB is not clear. Here, we report the structure of E. coli MlaC in complex with the MlaD hexamer in two distinct stoichiometries. Utilising in vivo complementation assays, an in vitro fluorescence-based transport assay, and molecular dynamics simulations, we confirm key residues, identifying the MlaD β6-β7 loop as essential for MlaCD function. We also provide evidence that phospholipids pass between the C-terminal helices of the MlaD hexamer to reach the central pore, providing insight into the trajectory of GPL transfer between MlaC and MlaD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌鞭毛,这有利于运动,由〜20种结构蛋白组成,这些结构蛋白被组织成长的细胞外细丝,通过周质棒连接到细胞质转子-定子复合物。鞭毛组装受到多个检查点的调节,这些检查点确保有序的基因表达模式与各种结构单元的组装耦合。这里,我们使用落射荧光,超分辨率,和透射电子显微镜显示,缺乏周质蛋白(FlhE)会阻止正常的鞭毛形态发生,并导致沙门氏菌中周质鞭毛的形成。周质鞭毛破坏细胞壁合成,导致细胞裂解的正常细胞形态的丧失。我们建议FlhE充当周质伴侣以控制周质棒的组装,从而防止周质鞭毛的形成。
    The bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of normal cell morphology resulting in cell lysis. We propose that FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod, thus preventing formation of periplasmic flagella.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过水分解制氢是可再生和可持续清洁能源的重要战略。在这项研究中,我们开发了一种集成纳米材料工程和合成生物学的方法,以建立一个生物阳极反应器系统,用于高效的制氢。电活性细菌的周质空间(20至30nm),ShewanellaoneidensisMR-1被设计用作生物阳极反应器,以增强电子和质子之间的相互作用,用氢化酶催化制氢。为了优化电子转移,我们使用微生物还原的氧化石墨烯(rGO)来涂覆电极,这改善了电子从电极到细胞的转移。在S.oneidensis上的天然MtrCAB蛋白复合物和自组装的硫化铁(FeS)纳米颗粒串联起作用,以促进电子从电极转移到周质。为了增强质子传输,S.onidensisMR-1被设计为表达视紫红质(GR)和光捕获天线角黄素。当暴露于光线时,这导致了有效的质子泵,导致制氢速率增加35.6%。天然[FeFe]氢化酶的过表达进一步提高了56.8%的产氢率。在S.oneidensisMR-1中设计的生物阳极反应器在-0.75V的电势下实现了80.4μmol/mg蛋白质/天的氢产量,法拉第效率为80%。这种周质生物阳极反应器结合了纳米材料和生物成分的优势,为微生物电合成提供了一种有效的方法。
    Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 μmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    革兰氏阴性菌的外膜(OM)是一个重要的细胞器,密集的OM蛋白(OMPs),在细胞功能和毒力中起关键作用。这些OMP的组装和插入到OM中代表了需要专门的分子伴侣的基本过程。一个例子是易位和组装模块(TAM),它作为一个跨信封伴侣,促进特定的自动转运体的折叠,粘附素,和分泌系统。TAM的催化单元,塔马,包含锚定在OM内的催化β-桶结构域和募集TamB亚基的三个周质多肽转运相关(POTRA)结构域。后者充当周质梯,促进未折叠的OMP跨周质运输。除了它们在招募辅助蛋白TamB中的作用之外,我们的数据表明,POTRA域介导与OM内表面的相互作用,最终调节膜的性质。通过X射线晶体学的整合,分子动力学模拟,和生物分子相互作用方法,我们将膜结合位点定位在第一和第二POTRA结构域上。我们的数据突出了磷脂酰甘油的结合偏好,OM中存在的次要脂质成分,以前曾报道过,以促进OMP组装。在密集的OMP填充膜的背景下,这种关联可以作为一种机制,通过与现有OMPs的空间相互作用来确保新生OMPs的脂质可及性,除了为OMP生物发生创造有利条件。
    The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic β-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    位于不同区室的多血红素细胞色素对于硫还原细菌中的胞外电子转移至关重要,以驱动重要的环境过程和生物技术应用。最近的研究表明,对于特定的电子末端受体组,离散的呼吸途径从内膜和外膜选择性地招募特定的细胞色素。然而,对于丰富的周质细胞色素没有观察到这种特异性,即三血红素细胞色素家族PpcA-E。在这项工作中,研究了这些蛋白质在不同氧化还原状态下的独特NMR光谱特征,以监测每对细胞色素之间的成对相互作用和电子转移反应。结果表明,五种蛋白质短暂相互作用,并且可以在彼此之间交换电子,从而揭示该家族成员内部的混杂性。根据该细胞色素池建立有效的电子转移网络来讨论这一发现。该网络对细菌是有利的,因为它能够维持细胞内的功能性工作电位氧化还原范围。
    Multiheme cytochromes located in different compartments are crucial for extracellular electron transfer in the bacterium Geobacter sulfurreducens to drive important environmental processes and biotechnological applications. Recent studies have unveiled that for particular sets of electron terminal acceptors, discrete respiratory pathways selectively recruit specific cytochromes from both the inner and outer membranes. However, such specificity was not observed for the abundant periplasmic cytochromes, namely the triheme cytochrome family PpcA-E. In this work, the distinctive NMR spectroscopic signatures of these proteins in different redox states were explored to monitor pairwise interactions and electron transfer reactions between each pair of cytochromes. The results showed that the five proteins interact transiently and can exchange electrons between each other revealing intra-promiscuity within the members of this family. This discovery is discussed in the light of the establishment of an effective electron transfer network by this pool of cytochromes. This network is advantageous to the bacteria as it enables the maintenance of the functional working potential redox range within the cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单结构域抗体生产技术(NANOBODY®分子,也被称为纳米抗体,nAb,或基于其他稳定蛋白质结构的分子)及其衍生物来解决生物医学中的当前问题正变得越来越受欢迎。的确,一个小的格式,具有稳定结构的高可溶性蛋白质,在具体识别方面充分发挥作用,作为创建多价的模块非常方便,双/寡核苷酸特异性基因工程靶向分子和结构。在大肠杆菌细菌的周质中生产nAb是获得分析量的nAb的非常方便和相当普遍的方式,用于这些分子的性质的初始研究和最有前途的nAb变体的选择。在相同条件下生产最初选择的nAb的二价和多价衍生物的情况更复杂。在这项工作中,在克隆的表达构建体中的抗原识别模块之间的延伸的接头序列(52和86个氨基酸)被开发和应用,以提高在大肠杆菌细菌的周质中产生双特异性纳米抗体(bsNB)的效率.本研究中描述的模型bsNBs的三种变体在细菌的周质中产生并以可溶形式分离,同时保留了所有蛋白质结构域的功能。如果早些时候我们尝试用不超过30aa的传统连接体在周质中产生bsNB的尝试不成功,这里使用的扩展接头提供了显著更有效的BSNB生产,在效率上与传统生产原始单体nAbs相当。使用足够长的接头可能对于提高大肠杆菌细菌周质中其他bsNB和类似分子的生产效率是有用的。
    Technology of production of single-domain antibodies (NANOBODY® molecules, also referred to as nanoantibodies, nAb, or molecules based on other stable protein structures) and their derivatives to solve current problems in biomedicine is becoming increasingly popular. Indeed, the format of one small, highly soluble protein with a stable structure, fully functional in terms of specific recognition, is very convenient as a module for creating multivalent, bi-/oligo-specific genetically engineered targeting molecules and structures. Production of nAb in periplasm of E. coli bacterium is a very convenient and fairly universal way to obtain analytical quantities of nAb for the initial study of the properties of these molecules and selection of the most promising nAb variants. The situation is more complicated with production of bi- and multivalent derivatives of the initially selected nAbs under the same conditions. In this work, extended linker sequences (52 and 86 aa) between the antigen-recognition modules in the cloned expression constructs were developed and applied in order to increase efficiency of production of bispecific nanoantibodies (bsNB) in the periplasm of E. coli bacteria. Three variants of model bsNBs described in this study were produced in the periplasm of bacteria and isolated in soluble form with preservation of functionality of all the protein domains. If earlier our attempts to produce bsNB in the periplasm with traditional linkers no longer than 30 aa were unsuccessful, the extended linkers used here provided a significantly more efficient production of bsNB, comparable in efficiency to the traditional production of original monomeric nAbs. The use of sufficiently long linkers could presumably be useful for increasing efficiency of production of other bsNBs and similar molecules in the periplasm of E. coli bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    TolC是在大肠杆菌中负责抗生素外排的外膜蛋白。与其他外膜蛋白相比,它具有不寻常的折叠,并且已显示出独立于常用的周质伴侣的折叠,苏拉和Skp.在这里,我们发现TolC的组装涉及使用圆二色性形成两个折叠中间体,凝胶电泳,位点特异性二硫键形成和放射性标记。首先TolC单体折叠,然后TolC在无洗涤剂缓冲液和洗涤剂胶束存在下组装成三聚体。我们发现TolC三聚体也在周质中形成,并在插入外膜之前存在于周质中。未来可能会使用单体和三聚体折叠中间体通过靶向TolC的组装途径来开发抗生素外排泵抑制的新方法。
    TolC is the outer membrane protein responsible for antibiotic efflux in E. coli. Compared to other outer membrane proteins it has an unusual fold and has been shown to fold independently of commonly used periplasmic chaperones, SurA and Skp. Here we find that the assembly of TolC involves the formation of two folded intermediates using circular dichroism, gel electrophoresis, site-specific disulfide bond formation and radioactive labeling. First the TolC monomer folds, and then TolC assembles into a trimer both in detergent-free buffer and in the presence of detergent micelles. We find that a TolC trimer also forms in the periplasm and is present in the periplasm before it inserts in the outer membrane. The monomeric and trimeric folding intermediates may be used in the future to develop a new approach to antibiotic efflux pump inhibition by targeting the assembly pathway of TolC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多个α-变形杆菌中的生物膜形成和表面附着是由单极多糖(UPP)粘附素驱动的。病原体根癌农杆菌产生UPP粘附素,其由细胞内第二信使环单磷酸二鸟苷酸(c-di-GMP)调节。之前的研究表明DcpA,二鸟苷酸环化酶-磷酸二酯酶,在控制UPP生产和表面附着方面至关重要。DcpA受PruR调控,一种与已知与钼蝶呤辅因子(MoCo)协调的酶域具有遥远相似性的蛋白质。蝶呤是双环富氮化合物,其中一些是通过叶酸生物合成途径的非必需分支产生的,与MoCo不同。蝶呤结合蛋白PruR控制DcpA活性,促进c-di-GMP分解并抑制其合成。蝶呤被排泄,我们在这里报告PruR与周质中的这些代谢物相关,促进与DcpA周质结构域的相互作用。蝶啶还原酶PruA,将特定的二氢蝶呤分子还原为其四氢形式,通过PruR赋予对DcpA活性的控制。相对于其他相关的蝶呤,四氢蝶呤优先与PruR缔合,在pruA突变体中PruR-DcpA相互作用降低。PruR和DcpA在操纵子中编码,在包括哺乳动物病原体在内的各种变形杆菌中具有广泛的保守性。晶体结构显示PruR和几个直系同源物采用保守折叠,具有与双环蝶呤环协调的蝶呤特异性结合间隙。这些发现定义了蝶呤响应性调节机制,该机制控制根癌农杆菌中生物膜的形成和相关的c-di-GMP依赖性表型,并可能在多种蛋白细菌谱系中更广泛地发挥作用。
    Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肽聚糖是细菌细胞壁的主要成分。其作为聚合物大厦的完整性对细菌生存至关重要,因此,它是抗生素的突出目标。肽聚糖是动态交联聚合物,其经历恒定的生物合成和周转。铜绿假单胞菌的可溶性裂解转糖基酶(Slt)是参与这种动态周转的周质酶。在活细菌中使用琥珀密码子抑制方法,我们将荧光发色团掺入Slt的结构中。荧光显微镜显示,Slt填充了周质空间的长度,并集中在子细胞中的分隔位点。该浓度在细胞分离后持续存在。琥珀密码子抑制方法也用于掺入光亲和氨基酸以捕获伴侣蛋白。基于质谱的蛋白质组学在体内鉴定了Slt的12个伴侣。这些蛋白质组学实验用体外下拉分析补充。确定了另外20个合作伙伴。我们克隆了基因并纯化至同质性22个鉴定的伴侣。生物物理表征证实所有都是真正的Slt粘合剂。Slt的蛋白质伴侣的身份跨越不同的周质蛋白质家族,包括已知存在于分裂体中的几种蛋白质。值得注意的周质伴侣(KD<0.5μM)包括PBPs(PBP1a,KD=0.07μM;PBP5=0.4μM);其他裂解转糖基转移酶(SltB2,KD=0.09μM;RlpA,KD=0.4μM);VI型分泌系统效应子(Tse5,KD=0.3μM);和用于藻酸盐生物合成的调节蛋白酶(AlgO,KD<0.4μM)。鉴于其相互作用的功能广度,Slt被概念化为周质内的中心蛋白。
    Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:大肠杆菌中的重组肽生产为对环境有害且大小受限的化学合成提供了可持续的替代方案。然而,高产量的二硫键肽的体内生产仍然具有挑战性,由于宿主蛋白酶/肽酶的降解以及转位到周质空间以形成二硫键的必要性。
    结果:在这项研究中,我们建立了在大肠杆菌周质中高效、可溶性生产二硫键肽的表达系统。我们选择了具有不同复杂性的模型肽(大小,结构,二硫键的数量),即甲状旁腺激素1-84,生长抑素1-28,plectasin,和牛胰胰蛋白酶抑制剂(抑肽酶)。所有的肽都在没有和有N末端的情况下表达,低分子量CASPON™标签(4.1kDa),表达盒被整合到宿主基因组中。在微升规模的BioLector™培养过程中,我们发现大多数模型肽只能与CASPON™标签组合充分表达,否则,在SDS-PAGE上的表达仅弱或检测不到。即使使用CASPON™标签,宿主蛋白酶/肽酶的不希望的降解也是明显的。因此,我们通过与共翻译或翻译后信号序列组合表达肽,研究了在易位之前或之后是否发生降解。我们的结果表明,降解主要发生在易位之后,因为降解片段似乎是相同的,独立于信号序列,并且表达与共翻译信号序列没有增强。最后,我们在生物反应器中的C限制补料分批培养过程中,在两种工业相关宿主菌株中表达了所有CASPON™标记的肽。我们发现工艺性能高度依赖于肽-宿主-组合。所达到的滴度在0.6-2.6gL-1之间变化,并且超过先前在大肠杆菌中公开的数据。此外,质谱显示所有的肽都被表达到完成,包括二硫键的完全形成。
    结论:在这项工作中,我们证明了CASPON™技术作为在大肠杆菌周质中生产可溶性肽的高效平台的潜力。我们在这里显示的滴度是前所未有的,每当甲状旁腺激素,生长抑素,plectasin或牛胰胰蛋白酶抑制剂在大肠杆菌中产生,从而使我们提出的上游平台优于以前发表的方法和化学合成。
    BACKGROUND: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation.
    RESULTS: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds.
    CONCLUSIONS: In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号