peripheral nerve development

  • 文章类型: Journal Article
    肠道微生物群负责人类健康的基本功能。肠道微生物群和其他器官之间通过神经的几个交流轴,内分泌,和免疫途径已经被描述,和肠道微生物群组成的扰动与许多新出现的疾病的发病和进展有关。这里,我们分析了周围神经,背根神经节(DRG),和具有以下肠道微生物群状态的新生和年轻成年小鼠的骨骼肌:a)无菌(GF),b)侏儒,选择性定植12种特定的肠道细菌菌株(Oligo-Mouse-Microbiota,OMM12),或c)天然复杂肠道微生物群(CGM)。体视学和形态学分析显示,肠道微生物群的缺乏会损害体细胞正中神经的发育,导致更小的直径和髓鞘过多的轴突,以及较小的无髓鞘纤维。因此,DRG和坐骨神经转录组学分析强调了一组差异表达的发育和髓鞘形成基因。有趣的是,神经调节蛋白1(NRG1)的III型同工型,已知是雪旺氏细胞髓鞘形成所必需的神经元信号,在年轻的成年GF小鼠中过表达,随后过度表达转录因子早期生长反应2(Egr2),一种由施万细胞在髓鞘形成开始时表达的基本基因。最后,GF状态导致组织学萎缩的骨骼肌,神经肌肉接头形成受损,和相关基因的表达失调。总之,我们首次证明了肠道微生物群对躯体周围神经系统的正常发育及其与骨骼肌的功能连接的调节作用,因此表明存在一种新的肠道微生物群-周围神经系统轴。\'
    Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel \'Gut Microbiota-Peripheral Nervous System-axis.\'
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    周围神经系统(PNS)的神经胶质细胞,施万细胞(SC),在身体最多层面的细胞中计数。在开发过程中,SCs确保神经元存活并参与轴突路径寻找。同时,他们精心策划了发育神经的建筑结构,包括血管和内皮细胞,周围和外膜层。围产期,在啮齿动物中,SCs径向分类,随后髓鞘化直径大于1μm的单个轴突,而小口径轴突组织在非髓鞘化的Remak束中。SC在维持整个生命的轴突健康方面具有至关重要的作用,几种特殊的SC类型在特定位置执行基本功能。例如神经肌肉接头(NMJ)的末端SC或皮肤感觉末端器官内的SC。此外,神经脊衍生的卫星神经胶质与感官的躯体保持着紧密的联系,同情,此外,副交感神经元和神经嵴衍生物是肠神经系统不可或缺的一部分。SCs的显着可塑性在神经损伤的背景下变得明显,SC转分化为有趣的修复细胞,协调促进神经修复的再生反应。的确,SC的多重适应令人着迷,但在分子水平上经常无法解决。这里,我们总结并讨论了这种单细胞类型在周围神经系统发育中可以覆盖的大量功能的已知和未知,维护,和修复。
    The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号