parvalbumin interneuron

小白蛋白中间神经元
  • 文章类型: Journal Article
    肌张力障碍应该是由基底神经节的运动回路异常引起的;然而,关于小脑参与的争论正在进行中。我们采用建立的小脑肌张力障碍小鼠模型,通过注射乌巴因检查小脑的贡献。最初,我们检查了是否有切核(EPN),黑质网状结构(SNr),苍白球(GPe),并在模型中激活纹状体神经元。接下来,我们研究了多巴胺D1受体激动剂(D1激动剂)和多巴胺D2受体拮抗剂(D2拮抗剂)或选择性去除纹状体小清蛋白(PV)中间神经元是否可以调节其不自主运动.小脑肌张力障碍小鼠在EPN中具有较高数量的c-fos阳性细胞,SNr,和GPe,纹状体PV中间神经元中c-fos的阳性率高于对照小鼠。此外,全身施用联合D1激动剂和D2拮抗剂以及选择性消融纹状体PV中间神经元缓解了它们的不自主运动。基底神经节运动回路的异常可能与小脑肌张力障碍密切相关,调节PV中间神经元可能提供一种新的治疗策略。
    Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    恐惧记忆障碍的消失是创伤后应激障碍(PTSD)中最常见的症状之一,由于对其潜在的神经底物了解不足,治疗策略有限。在这项研究中,进行功能筛查,并在恐惧灭绝期间确定中背丘脑核(MD)的多动症。此外,使用多种机器学习算法在持续恐惧反应期间研究了超激活MD的编码模式。前扣带回皮层(ACC)也被认为是MD的功能下游区域,可介导恐惧记忆的消失。对丘脑皮质回路进行综合分析,发现在PTSD小鼠中MD-ACC小清蛋白中间神经元回路优先增强,破坏局部兴奋性和抑制性平衡。发现Kv3.2通道的磷酸化降低有助于过度活化的MD,主要是出现故障的丘脑皮质回路。使用基于脂质纳米颗粒的RNA治疗策略,通过靶向蛋白磷酸酶6催化亚基的甲氧基化siRNA纠正了通道作用,并恢复了PTSD小鼠的恐惧记忆消失。这些发现强调了丘脑皮质回路在PTSD相关的恐惧记忆受损消失中的功能,并为PTSD的Kv3.2靶向RNA治疗提供了治疗性见解。
    Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在研究神经周网状物(PNN)和神经蛋白聚糖(NCAN)对脊髓抑制性小白蛋白中间神经元(PV-IN)的影响,以及电针(EA)通过PNN中的Neurocan促进脊髓损伤(SCI)修复的机制。
    方法:建立SCI小鼠模型。假手术小鼠或SCI模型小鼠用硫酸软骨素ABC(ChABC)酶或对照载体治疗2周(即,sham+veh组,sham+ChABC组,SCI+veh集团,SCI+ChABC组,分别),然后从T10病变中心取脊髓组织进行RNA测序(RNA-seq)。用于功能分析的MSigDBHallmark和C5数据库,差异表达基因分析(DEG)等分析策略,京都基因和基因组百科全书(KEGG),基因集富集分析(GSEA),和蛋白质-蛋白质相互作用(PPI)。根据RNA-seq分析的结果,NCAN的表达被病毒干预敲低或过表达,或/和EA干预。聚合酶链反应(PCR),免疫荧光,westernblot,电生理学,并进行行为测试。
    结果:成功建立SCI模型后,下肢运动功能障碍,SCI中心PNN核心聚糖蛋白表达降低。RNA-seq和PCR显示,除NCAN外,PNN核心蛋白聚糖在ChABC处理的正常和损伤脊髓中表现出相同的表达趋势。KEGG和GSEA显示PNN主要与损伤脊髓组织中抑制性GABA神经元功能有关,和PPI显示PNN中的NCAN可以通过小清蛋白(PV)与抑制性神经元功能有关。钙成像显示PNN破坏后局部小白蛋白中间神经元(PV-IN)活性降低,无论是由于ChABC治疗还是脊髓的手术擦伤。神经蛋白聚糖在受损脊髓中的过表达可增强局部PV-IN活性。PCR和westernblot提示过表达或敲低的Neurocan可以上调或下调GAD的表达。同时,初级运动皮层(M1)和下肢初级感觉皮层(S1HL)的PV-IN活性同步变化。此外,神经的过度表达可以改善下肢的电活动,促进瘫痪后肢的功能修复。EA干预逆转了神经聚糖的下调,增强了病变区PNN的表达,M1和S1HL。
    结论:PNN中的Neurocan可以调节PV-IN的活性,EA可以通过上调PNN中Neurocan的表达来促进SCI小鼠的功能恢复。
    This study aimed to investigate the effect of perineuronal net (PNN) and neurocan (NCAN) on spinal inhibitory parvalbumin interneuron (PV-IN), and the mechanism of electroacupuncture (EA) in promoting spinal cord injury (SCI) repair through neurocan in PNN.
    A mouse model of SCI was established. Sham-operated mice or SCI model mice were treated with chondroitin sulfate ABC (ChABC) enzyme or control vehicle for 2 weeks (i.e., sham+veh group, sham+ChABC group, SCI+veh group, and SCI+ChABC group, respectively), and then spinal cord tissues were taken from the T10 lesion epicenter for RNA sequencing (RNA-seq). MSigDB Hallmark and C5 databases for functional analysis, analysis strategies such as differential expression gene analysis (DEG), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI). According to the results of RNA-seq analysis, the expression of NCAN was knocked down or overexpressed by virus intervention, or/and EA intervention. Polymerase chain reaction (PCR), immunofluorescence, western blot, electrophysiological, and behavioral tests were performed.
    After the successful establishment of SCI model, the motor dysfunction of lower limbs, and the expression of PNN core glycan protein at the epicenter of SCI were reduced. RNA-seq and PCR showed that PNN core proteoglycans except NCAN showed the same expression trend in normal and injured spinal cord treated with ChABC. KEGG and GSEA showed that PNN is mainly associated with inhibitory GABA neuronal function in injured spinal cord tissue, and PPI showed that NCAN in PNN can be associated with inhibitory neuronal function through parvalbumin (PV). Calcium imaging showed that local parvalbumin interneuron (PV-IN) activity decreased after PNN destruction, whether due to ChABC treatment or surgical bruising of the spinal cord. Overexpression of neurocan in injured spinal cord can enhance local PV-IN activity. PCR and western blot suggested that overexpression or knockdown of neurocan could up-regulate or down-regulate the expression of GAD. At the same time, the activity of PV-IN in the primary motor cortex (M1) and the primary sensory cortex of lower (S1HL) extremity changed synchronously. In addition, overexpression of neurocan improved the electrical activity of the lower limb and promoted functional repair of the paralyzed hind limb. EA intervention reversed the down-regulation of neurocan, enhanced the expression of PNN in the lesioned area, M1 and S1HL.
    Neurocan in PNN can regulate the activity of PV-IN, and EA can promote functional recovery of mice with SCI by upregulating neurocan expression in PNN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    前扣带回皮质(ACC)的过度兴奋与慢性疼痛的发展有关。作为ACC兴奋过度的关键原因之一,ACC的去抑制可能与抑制性小清蛋白(PV)表达中间神经元(PV-INs)的功能障碍密切相关。然而,ACCPV-INs损伤的分子机制尚不清楚.本研究表明,幸免的坐骨神经损伤(SNI)会导致ACC的兴奋和抑制(E/I)失衡。为了测试SNI后ACC中肿瘤坏死因子-α(TNF-α)是否上调激活坏死并参与PV-INs损伤,我们使用来自神经性疼痛模型的数据对转录组测序进行差异分析,发现TNF-α-坏死途径关键基因的表达上调.SNI大鼠ACCs中的TNF-α免疫反应性(IR)信号与p-RIP3-和PV-IR共定位,或p-MLKL-和PV-IR信号。然后,我们系统地检测了坏死相关蛋白的表达和细胞定位,包括激酶RIP1,RIP3,MLKL,以及它们的磷酸化状态,在SNI大鼠的ACC中。除了RIP1和MLKL,这些蛋白质的水平在对侧ACC中显着升高,主要在PV-INs中表达。通过显微注射TNF-α中和抗体或使用siRNA敲低阻断ACC中MLKL的表达来阻断ACCTNF-α-坏死途径减轻了SNI诱导的疼痛超敏反应,并抑制了TNF-α和p-MLKL的上调。在ACCPV-INs内靶向TNF-α触发的坏死可能有助于纠正神经性疼痛中ACC的PV-INs损伤和E/I失衡。
    The hyperexcitability of the anterior cingulate cortex (ACC) has been implicated in the development of chronic pain. As one of the key causes of ACC hyperexcitation, disinhibition of the ACC may be closely related to the dysfunction of inhibitory parvalbumin (PV)-expressing interneurons (PV-INs). However, the molecular mechanism underlying the ACC PV-INs injury remains unclear. The present study demonstrates that spared sciatic nerve injury (SNI) induces an imbalance in the excitation and inhibition (E/I) of the ACC. To test whether tumor necrosis factor-α (TNF-α) upregulation in the ACC after SNI activates necroptosis and participates in PV-INs damage, we performed a differential analysis of transcriptome sequencing using data from neuropathic pain models and found that the expression of genes key to the TNF-α-necroptosis pathway were upregulated. TNF-α immunoreactivity (IR) signals in the ACCs of SNI rats were co-located with p-RIP3- and PV-IR, or p-MLKL- and PV-IR signals. We then systematically detected the expression and cell localization of necroptosis-related proteins, including kinase RIP1, RIP3, MLKL, and their phosphorylated states, in the ACC of SNI rats. Except for RIP1 and MLKL, the levels of these proteins were significantly elevated in the contralateral ACC and mainly expressed in PV-INs. Blocking the ACC TNF-α-necroptosis pathway by microinjecting TNF-α neutralizing antibody or using an siRNA knockdown to block expression of MLKL in the ACC alleviated SNI-induced pain hypersensitivity and inhibited the upregulation of TNF-α and p-MLKL. Targeting TNF-α-triggered necroptosis within ACC PV-INs may help to correct PV-INs injury and E/I imbalance in the ACC in neuropathic pain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    双特异性酪氨酸磷酸化调节激酶1a(Dyrk1a)基因中的杂合突变定义了自闭症谱系障碍的一种综合征形式。在社会认知中介导DYRK1A功能的突触和回路机制尚不清楚。这里,我们在海马苔藓纤维-小白蛋白中间神经元(PVIN)突触中发现了一种社会经验敏感机制,DYRK1A通过该机制募集对CA3和CA2的前馈抑制以促进社会识别.我们采用遗传上位逻辑来鉴定细胞骨架蛋白,ABLIM3,作为DYRK1A的突触底物。我们证明,成年杂合Dyrk1a小鼠的齿状颗粒细胞中的Ablim3下调足以恢复PVIN介导的对CA3和CA2的抑制和社会认可。成年杂合Dyrk1a小鼠的CA3/CA2中PVINs的急性化学遗传激活也挽救了社会认可。一起,这些发现说明了将DYRK1A突触和电路底物作为“DYRK1A功能增强剂”如何具有逆转Dyrk1a单倍体功能不全相关电路和认知障碍的潜力。
    Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as \"enhancers of DYRK1A function\" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小白蛋白中间神经元属于GABA能中间神经元的主要类型。虽然小白蛋白间神经元的分布和病理改变已被广泛研究,从小白蛋白中间神经元延伸的神经突和纤维的分布和易损性尚未得到详细的询问。通过Cre重组酶-报告基因系统,我们观察了小白蛋白阳性纤维,并彻底研究了它们在小鼠大脑中的空间分布。我们发现小白蛋白纤维广泛分布于脑内,在不同区域具有特定的形态特征,其中皮质和丘脑表现出最强烈的小白蛋白信号。在纹状体和视神经束等区域,甚至可以检测到远距离的厚小白蛋白投影。此外,在颞叶癫痫和帕金森病小鼠模型中,小白蛋白纤维遭受大量和微妙的形态改变。我们的研究概述了大脑中的小白蛋白纤维,并强调了小白蛋白纤维改变的潜在病理意义。
    Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson\'s disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    小白蛋白(PV)中间神经元是抑制性快速尖峰细胞,在指导信息通过皮质回路流动方面具有重要作用。这些神经元在兴奋和抑制之间建立平衡,控制有节奏的活动,并与包括自闭症谱系和精神分裂症在内的疾病有关。PV中间神经元在它们的形态上在皮质层之间是不同的,电路,和功能,但是它们的电生理特性如何变化却很少受到关注。在这里,我们研究了初级体感桶形皮层(BC)不同层中PV中间神经元对不同兴奋性输入的反应。有了基因编码的混合电压传感器,hVOS,我们同时记录了许多L2/3和L4PV中间神经元对L2/3或L4刺激的电压变化。衰减时间在L2/3和L4之间是一致的。振幅,半宽度,与L4相比,位于L2/3中的PV中间神经元的上升时间更长。与L4中的刺激相比,L2/3中的刺激在L2/3和L4两者中引起具有更长潜伏期的反应。层之间的延迟的这些差异可能会影响它们的时间整合窗口。因此,BC不同皮质层中的PV中间神经元在响应特性上显示出差异,在皮质计算中具有潜在作用。
    使用靶向遗传编码的电压传感器在小鼠桶状皮质切片中的小白蛋白(PV)中间神经元中成像兴奋性突触反应。该方法揭示了响应于刺激的大约20个神经元预切片中的同时电压变化。位于2/3层中的PV中间神经元具有较大的振幅,较长的半宽度,并且比位于第4层的PV中间神经元更长的上升时间。与层2/3的刺激相比,位于层2/3或层4中的PV中间神经元的响应对层4的刺激具有更短的潜伏期。对PV中间神经元的兴奋性突触传递随驻留层和兴奋源而变化。
    Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in directing the flow of information through cortical circuits. These neurons set the balance between excitation and inhibition, control rhythmic activity, and have been linked to disorders including autism spectrum and schizophrenia. PV interneurons differ between cortical layers in their morphology, circuitry, and function, but how their electrophysiological properties vary has received little attention. Here we investigate responses of PV interneurons in different layers of primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-encoded hybrid voltage sensor, hVOS, we recorded voltage changes simultaneously in many L2/3 and L4 PV interneurons to stimulation in either L2/3 or L4. Decay-times were consistent across L2/3 and L4. Amplitude, half-width, and rise-time were greater for PV interneurons residing in L2/3 compared to L4. Stimulation in L2/3 elicited responses in both L2/3 and L4 with longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus PV interneurons in different cortical layers of BC show differences in response properties with potential roles in cortical computations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胞质动力蛋白是一种重要的细胞内运动蛋白,在神经元生长中起着重要作用,轴突极性形成,树突状分化,和树突脊柱发育等等。动力蛋白的中间链,由Dync1i1编码,在动力蛋白复合物中起着至关重要的作用。因此,我们评估了dync1i1基因敲除小鼠的行为和相关的神经元活动。通过体内电生理学记录初级体感皮层的神经元活动,并通过光遗传学和化学遗传学进行操纵。机械伤害感受,热,Dync1i1-/-小鼠的冷痛受损。当暴露于机械伤害性刺激时,初级体感中的小白蛋白(PV)中间神经元的活动和γ振荡也受到损害。通过Dync1i1-/-小鼠中PV神经元的光遗传学激活挽救了这种神经元功能障碍,并通过在WT小鼠中使用化学遗传学抑制PV神经元来模拟。由于中间神经元的丢失,Dync1i1-/-小鼠的疼痛感觉受损与受损的伽马振荡相关,尤其是PV型。这种基因型驱动的方法揭示了痛觉受损与细胞质动力蛋白复合物之间的关联。
    Cytoplasmic dynein is an important intracellular motor protein that plays an important role in neuronal growth, axonal polarity formation, dendritic differentiation, and dendritic spine development among others. The intermediate chain of dynein, encoded by Dync1i1, plays a vital role in the dynein complex. Therefore, we assessed the behavioral and related neuronal activities in mice with dync1i1 gene knockout. Neuronal activities in primary somatosensory cortex were recorded by in vivo electrophysiology and manipulated by optogenetic and chemogenetics. Nociception of mechanical, thermal, and cold pain in Dync1i1-/- mice were impaired. The activities of parvalbumin (PV) interneurons and gamma oscillation in primary somatosensory were also impaired when exposed to mechanical nociceptive stimulation. This neuronal dysfunction was rescued by optogenetic activation of PV neurons in Dync1i1-/- mice, and mimicked by suppressing PV neurons using chemogenetics in WT mice. Impaired pain sensations in Dync1i1-/- mice were correlated with impaired gamma oscillations due to a loss of interneurons, especially the PV type. This genotype-driven approach revealed an association between impaired pain sensation and cytoplasmic dynein complex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在阿尔茨海默病(AD)的早期阶段,肽淀粉样β(Aβ)的积累会破坏突触并破坏神经元活性,导致与认知相关的神经元振荡中断。这被认为主要是由于中枢神经系统突触抑制受损,特别是通过表达小白蛋白(PV)的中间神经元,这对于产生几个关键振荡至关重要。该领域的研究主要是在过度表达人源化的小鼠模型中进行的,产生夸大病理的AD相关基因的突变形式。这促使了在内源水平上表达这些基因的敲入小鼠系的开发和使用,例如本研究中使用的AppNL-G-F/NL-G-F小鼠模型。这些小鼠似乎可以模拟Aβ诱导的网络损伤的早期阶段,然而,对目前缺乏的这些损伤进行了深入的表征。因此,使用16个月大的AppNL-G-F/NL-G-F小鼠,我们分析了海马和内侧前额叶皮层(mPFC)在清醒行为中发现的神经元振荡,快速眼动(REM)和非REM(NREM)睡眠来评估网络功能障碍的程度。在清醒行为期间,海马体或mPFC均未发现伽马振荡发生改变。REM或NREM睡眠。然而,在NREM睡眠期间,发现mPFC纺锤体功率增加,海马锐波波纹功率降低。后者伴随着表达PV的中间神经元活动的同步性增加,使用双光子Ca2+成像测量,以及表达PV的中间神经元密度降低。此外,尽管在mPFC和海马的本地网络功能中检测到变化,这些区域之间的远程通信似乎完好无损。总之,我们的研究结果表明,这些NREM睡眠特异性损伤代表了对淀粉样蛋白病的反应导致的回路破裂的早期阶段.
    In the early stages of Alzheimer\'s disease (AD), the accumulation of the peptide amyloid-β (Aβ) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aβ-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    远处大脑区域之间的神经元通信的关键模式是通过由主要神经元发出的远距离谷氨酸能投射介导的兴奋性突触传递。远距离谷氨酸能投射通常在其路径上的主要神经元和中间神经元上形成许多通过性兴奋性突触。在生理条件下,对突触后主要神经元的单突触兴奋性驱动超过双突触前馈抑制,具有去极化主神经元的净效应。与这种传统学说相反,在这里,我们报道了来自下丘脑哺乳动物上核(SuM)的谷氨酸能投射在很大程度上逃避了突触后锥体神经元(PNs),但优先靶向海马CA3区的中间神经元以主要提供前馈抑制。使用基于病毒的逆行和顺行追踪和ChannelRhodopsin2(ChR2)辅助膜片钳记录两种性别的小鼠,我们表明SuM稀疏地投射到CA3,并在CA3PN上提供最小的激励。令人惊讶的是,尽管它的神经支配稀疏,SuM输入禁止沿横轴的所有CA3PN。Further,我们发现,SuM提供强大的单突触兴奋对CA3小白蛋白(PV)-表达中间神经元沿横轴均匀,这可能介导了SuM驱动的前馈抑制。一起来看,我们的结果表明,一种新的远距离谷氨酸能途径在很大程度上避开了主要神经元,而是优先支配远处大脑区域的中间神经元以抑制主要神经元的活动。此外,我们的发现揭示了SuM通过SuM-to-CA3回路调节海马活动的新方法,独立于先前从SuM到CA2或齿状回的聚焦投影。意义陈述:脑区之间神经元通讯的主要模式是由远距离谷氨酸能投射介导的兴奋性突触传递,沿着其路径在锥体神经元和中间神经元上形成通过性兴奋性突触。在正常情况下,对突触后神经元的兴奋超过前馈抑制,具有去极化的净效应。与这种传统学说相反,在这里,我们报告了来自下丘脑上乳核(SuM)的谷氨酸能输入在很大程度上逃避了PNs,但选择性地靶向中间神经元,几乎仅对海马CA3PNs提供突触前馈抑制。因此,我们的发现揭示了一种新的皮质下-海马回路,使SuM能够通过SuM-CA3回路调节海马活动,独立于其对CA2或齿状回的投影。
    A key mode of neuronal communication between distant brain regions is through excitatory synaptic transmission mediated by long-range glutamatergic projections emitted from principal neurons. The long-range glutamatergic projection normally forms numerous en passant excitatory synapses onto both principal neurons and interneurons along its path. Under physiological conditions, the monosynaptic excitatory drive onto postsynaptic principal neurons outweighs disynaptic feedforward inhibition, with the net effect of depolarizing principal neurons. In contrast with this conventional doctrine, here we report that a glutamatergic projection from the hypothalamic supramammillary nucleus (SuM) largely evades postsynaptic pyramidal neurons (PNs), but preferentially target interneurons in the hippocampal CA3 region to predominantly provide feedforward inhibition. Using viral-based retrograde and anterograde tracing and ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording in mice of either sex, we show that SuM projects sparsely to CA3 and provides minimal excitation onto CA3 PNs. Surprisingly, despite its sparse innervation, the SuM input inhibits all CA3 PNs along the transverse axis. Further, we find that SuM provides strong monosynaptic excitation onto CA3 parvalbumin-expressing interneurons evenly along the transverse axis, which likely mediates the SuM-driven feedforward inhibition. Together, our results demonstrate that a novel long-range glutamatergic pathway largely evades principal neurons, but rather preferentially innervates interneurons in a distant brain region to suppress principal neuron activity. Moreover, our findings reveal a new means by which SuM regulates hippocampal activity through SuM-to-CA3 circuit, independent of the previously focused projections from SuM to CA2 or dentate gyrus.SIGNIFICANCE STATEMENT The dominant mode of neuronal communication between brain regions is the excitatory synaptic transmission mediated by long-range glutamatergic projections, which form en passant excitatory synapses onto both pyramidal neurons and interneurons along its path. Under normal conditions, the excitation onto postsynaptic neurons outweighs feedforward inhibition, with the net effect of depolarization. In contrast with this conventional doctrine, here we report that a glutamatergic input from hypothalamic supramammillary nucleus (SuM) largely evades PNs but selectively targets interneurons to almost exclusively provide disynaptic feedforward inhibition onto hippocampal CA3 PNs. Thus, our findings reveal a novel subcortical-hippocampal circuit that enables SuM to regulate hippocampal activity via SuM-CA3 circuit, independent of its projections to CA2 or dentate gyrus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号