particle pruning

  • 文章类型: Journal Article
    低温电子显微镜(cryo-EM)单粒子分析需要成千上万的粒子投影才能揭示大分子复合物的结构信息。然而,由于低信噪比和高对比度伪影和污染物在显微照片的存在,半自动和全自动粒子拾取算法往往会出现高假阳性率,这降低了结构确定的置信度。在这项研究中,我们引入PickerOptimizer(PO),基于迁移学习的分类神经网络,用于低温EM中的粒子修剪,作为补充当前自动粒子拾取算法的附加策略。为了以最少的人为干预实现高分类性能,我们采用了两个关键策略:(1)利用迁移学习技术训练卷积神经网络,其中从公共分类数据集获得的知识应用于低温EM领域。(2)设计多损失策略,多个损失函数的组合,来指导网络参数的优化。为了减少预训练的低温EM图像和自然图像之间的域偏移,我们为cryo-EM构建了第一个图像分类数据集,其中包含从EMPIAR条目中收集的阳性和阴性样本。PO在14个公共实验数据集上进行了测试,在大多数情况下,达到95%以上的准确性和F1分数。此外,提供了三个案例研究,通过在有问题的粒子选择上应用PO来验证模型性能,表明与其他粒子修剪策略相比,我们的算法获得了更好或可比的性能。
    The cryo-electron microscopy (cryo-EM) single-particle analysis requires tens of thousands of particle projections to reveal structural information of macromolecular complexes. However, due to the low signal-to-noise ratio and the presence of high contrast artifacts and contaminants in the micrographs, the semiautomatic and fully automatic particle picking algorithms tend to suffer from high false-positive rates, which degrades the confidence of structure determination. In this study, we introduce PickerOptimizer (PO), a transfer learning-based classification neural network for particle pruning in cryo-EM, as an additional strategy to complement the current automated particle picking algorithms. To achieve high classification performance with minimal human intervention, we adopted two key strategies: (1) utilizing the transfer learning techniques to train the convolutional neural network, where the knowledge gained from public classification datasets is applied to the field of cryo-EM. (2) Designing a multiloss strategy, a combination of multiple loss functions, to guide the optimization of the network parameters. To reduce the domain shift between cryo-EM images and natural images for pretraining, we build the first image classification dataset for cryo-EM, which contains positive and negative samples collected from EMPIAR entries. The PO is tested on 14 public experimental datasets, achieving accuracy and F1 scores above 95% in most cases. Furthermore, three case studies are provided to verify the model performance by applying PO on problematic particle selections, showing that our algorithm achieved better or comparable performance compared with other particle pruning strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单粒子低温电子显微镜(cryo-EM)最近已成为确定大分子结构的主流技术。典型的低温EM工作流程使用粒子拾取算法从数千个显微照片中收集成千上万的单粒子投影。然而,这些算法选择的误报数量很大,因此,许多不同的“清洗步骤”是必要的,以降低假阳性率。用于修剪假阳性粒子的最常用技术是耗时的并且需要用户干预。为了克服这些限制,这项工作提出了一种基于深度学习的算法,名为DeepConsensus。深度共识通过计算不同粒子拾取算法的输出的智能共识来工作,导致一组粒子的假阳性率低于采集器获得的初始组。深度共识基于深度卷积神经网络,该神经网络在半自动生成的数据集上进行训练。深度共识的表现已经在两个众所周知的实验数据集上进行了评估,几乎消除了用户对修剪的干预,并提高了整个过程的可重复性和客观性,同时实现了90%以上的准确率和召回率。
    Single-particle cryo-electron microscopy (cryo-EM) has recently become a mainstream technique for the structural determination of macromolecules. Typical cryo-EM workflows collect hundreds of thousands of single-particle projections from thousands of micrographs using particle-picking algorithms. However, the number of false positives selected by these algorithms is large, so that a number of different \'cleaning steps\' are necessary to decrease the false-positive ratio. Most commonly employed techniques for the pruning of false-positive particles are time-consuming and require user intervention. In order to overcome these limitations, a deep learning-based algorithm named Deep Consensus is presented in this work. Deep Consensus works by computing a smart consensus over the output of different particle-picking algorithms, resulting in a set of particles with a lower false-positive ratio than the initial set obtained by the pickers. Deep Consensus is based on a deep convolutional neural network that is trained on a semi-automatically generated data set. The performance of Deep Consensus has been assessed on two well known experimental data sets, virtually eliminating user intervention for pruning, and enhances the reproducibility and objectivity of the whole process while achieving precision and recall figures above 90%.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号