oxygen reduction reaction

氧还原反应
  • 文章类型: Journal Article
    将Pt基催化剂结构定制为用于氧还原反应(ORR)的一维纳米线一直是研究的焦点。Mo(CO)6通常用作形成纳米线的形态改性剂,但发现它不可避免地导致Mo掺杂。这种掺杂引入了独特的电化学信号,在其他Pt基催化剂中没有看到,能直接反映催化剂的稳定性。通过实验,证明了Mo掺杂不利于ORR性能,和理论计算表明,固有失活的Mo位点也会毒害周围Pt的ORR活性。因此,提出了一种新的气体辅助技术,用CO代替Mo(CO)6,形成长度增加一个数量级的超细纳米线,排除了Mo的影响。催化剂在1.24AmgPt-1,比Pt/C大7.45倍,表现出显著的ORR质量活动,以及稳定性的实质性改善。使用这种催化剂的质子交换膜燃料电池提供了更高的功率密度(0.7Wcm-2)。本研究提出了一种制备超长纳米线的新方法,为低铂催化剂在PEMFC中的实际应用开辟了新的途径。
    The structural tailoring of Pt-based catalysts into 1D nanowires for oxygen reduction reactions (ORR) has been a focus of research. Mo(CO)6 is commonly used as a morphological modifier to form nanowires, but it is found that it inevitably leads to Mo doping. This doping introduces unique electrochemical signals not seen in other Pt-based catalysts, which can directly reflect the stability of the catalyst. Through experiments, it is demonstrated that Mo doping is detrimental to ORR performance, and theoretical calculations have shown that Mo sites that are inherently inactive also poison the ORR activity of the surrounding Pt. Therefore, a novel gas-assisted technique is proposed to replace Mo(CO)6 with CO, which forms ultrafine nanowires with an order of magnitude increase in length, ruling out the effect of Mo. The catalyst performs at 1.24 A mgPt -1, 7.45 times greater than Pt/C, demonstrating significant ORR mass activity, and a substantial improvement in stability. The proton exchange membrane fuel cell using this catalyst provides a higher power density (0.7 W cm-2). This study presents a new method for the preparation of ultra-long nanowires, which opens up new avenues for future practical applications of low-Pt catalysts in PEMFC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    强制流原子层沉积纳米层化用于在XC-72上制造Pt-Ni纳米颗粒,其组成范围为Pt94Ni6至Pt67Ni33。氢用作沉积Pt和Ni的共反应物。Pt的生长速度比使用氧反应物慢,并且该生长表现出沿着(111)平面的优选取向。Ni的生长速度远低于Pt,它只选择性地沉积在铂上,不在基板上。较高的Ni比率会阻碍随后的Pt原子堆叠,导致较低的整体生长速率和较小的颗粒(1.3-2.1nm)。Pt与Ni的合金化导致晶格偏移,其随着Ni分数增加而导致更大的晶格参数和d-间距。从电子状态分析来看,随着Ni含量的增加,Pt4f峰移动到较低的结合能,表明电荷从Ni转移到Pt。提出了生长行为的示意图。大多数合金纳米颗粒表现出比商业Pt更高的电化学表面积和氧还原反应活性。尤其是,Pt83Ni17和Pt87Ni13表现出优异的质量活性,分别为0.76和0.59AmgPt-1,高于2025年的DOE目标,0.44mgPt-1。
    Forced-flow atomic layer deposition nanolamination is employed to fabricate Pt-Ni nanoparticles on XC-72, with the compositions ranging from Pt94Ni6 to Pt67Ni33. Hydrogen is used as a co-reactant for depositing Pt and Ni. The growth rate of Pt is slower than that using oxygen reactant, and the growth exhibits preferred orientation along the (111) plane. Ni shows much slower growth rate than Pt, and it is only selectively deposited on Pt, not on the substrate. Higher ratios of Ni would hinder subsequent stacking of Pt atoms, resulting in lower overall growth rate and smaller particles (1.3-2.1 nm). Alloying of Pt with Ni causes shifted lattice that leads to larger lattice parameter and d-spacing as Ni fraction increases. From the electronic state analysis, Pt 4f peaks are shifted to lower binding energies with increasing the Ni content, suggesting charge transfer from Ni to Pt. Schematic of the growth behavior is proposed. Most of the alloy nanoparticles exhibit higher electrochemical surface area and oxygen reduction reaction activity than those of commercial Pt. Especially, Pt83Ni17 and Pt87Ni13 show excellent mass activities of 0.76 and 0.59 A mgPt -1, respectively, higher than the DOE target of 2025, 0.44 A mgPt -1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    缺陷工程是调控纳米材料电催化的有效策略,然而,很少考虑将其用于调节用于氧还原反应(ORR)的Pt基电催化剂。在这项研究中,我们设计了锚定在氮掺杂石墨烯(Vac-NiPtNPs/NG)上的Ni掺杂的富空位Pt纳米颗粒,其Pt负载量低,为3.5wt。和0.038:1的Ni/Pt比。物理表征证实了PtNP中大量原子级空位的存在会引起长程晶格畸变,和Ni掺杂剂产生配体效应,导致电子从Ni转移到Pt。实验结果和理论计算表明,原子级空位主要贡献了对CO和CH3OH的耐受性能,源自少量Ni掺杂剂的配体效应加速了从*O到*OH物种的转化,从而改善ORR活性而不损害耐受能力。受益于原子级空位和配体效应之间的协同相互作用,制备的Vac-NiPtNPs/NG表现出改善的ORR活性,足够的容忍能力,和出色的耐用性。本研究为调节金属基纳米材料的电催化活性提供了新的途径。
    Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt-based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni-doped vacancy-rich Pt nanoparticles anchored on nitrogen-doped graphene (Vac-NiPt NPs/NG) with a low Pt loading of 3.5 wt.% and a Ni/Pt ratio of 0.038:1. Physical characterizations confirmed the presence of abundant atomic-scale vacancies in the Pt NPs induces long-range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic-scale vacancies mainly contributed the tolerance performances towards CO and CH3OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic-scale vacancies and ligand effect, as-prepared Vac-NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal-based nanomaterials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过选择性生产H2O2,双电子(2e)氧还原反应(ORR)具有挑战性,特别是当它作为一个先进的氧化过程(AOP)的成本效益的水去污。在这里,我们使用碳纳米管带电膜与布洛芬(IBU)分子负载(IBU@CNT-EM)在超快,单程电滤过程。IBU@CNT-EM可以在渗透物中以25.62molgCNT-1h-1L-1的速率产生H2O2,停留时间为1.81s。我们证明了交织,亲水-疏水膜纳米结构为ORR加速提供了优异的空气-水传输平台。在中性pH下IBU@CNT的ORR的电子转移数被证实为2.71,表明对H2O2的选择性接近-2e。密度泛函理论(DFT)研究验证了IBU@CNT对于O2吸附的特殊电荷分布。O2和*OOH中间体的吸附能与H2O2选择性(64.39%)成正比,高于CNT(37.81%)。通过IBU@CNT-EM电过滤简单耐用地生产H2O2,渗透物可以驱动Fenton氧化以有效地分解新出现的污染物并灭活细菌。我们的研究引入了一种通过重复使用环境功能材料来开发用于水处理的高性能H2O2生产膜的新范例。
    Producing H2O2 through a selective, two-electron (2e) oxygen reduction reaction (ORR) is challenging, especially when it serves as an advanced oxidation process (AOP) for cost-effective water decontamination. Herein, we attain a 2e-selectivity H2O2 production using a carbon nanotube electrified membrane with ibuprofen (IBU) molecules laden (IBU@CNT-EM) in an ultrafast, single-pass electrofiltration process. The IBU@CNT-EM can generate H2O2 at a rate of 25.62 mol gCNT-1 h-1 L-1 in the permeate with a residence time of 1.81 s. We demonstrated that an interwoven, hydrophilic-hydrophobic membrane nanostructure offers an excellent air-to-water transport platform for ORR acceleration. The electron transfer number of the ORR for IBU@CNT at neutral pH was confirmed as 2.71, elucidating a near-2e selectivity to H2O2. Density functional theory (DFT) studies validated an exceptional charge distribution of the IBU@CNT for the O2 adsorption. The adsorption energies of the O2 and *OOH intermediates are proportional to the H2O2 selectivity (64.39%), higher than that of the CNT (37.81%). With the simple and durable production of H2O2 by IBU@CNT-EM electrofiltration, the permeate can actuate Fenton oxidation to efficiently decompose emerging pollutants and inactivate bacteria. Our study introduces a new paradigm for developing high-performance H2O2-production membranes for water treatment by reusing environmental functional materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在此,制备了用于锌空气电池(ZAB)的高性能Fe2O(SeO3)2/Fe3C@NC催化剂。实验结果证实了Fe2O(SeO3)2晶相中Fe-O-Se键的存在,Fe-O-Se键可以明显提高Fe2O(SeO3)2/Fe3C@NC的ORR和OER催化性能。密度泛函理论计算(DFT)证实,Fe2O(SeO3)2/Fe3C@NC中的Fe2O(SeO3)2比Fe2O3具有更高的Fe原子d带中心和更低的与自身晶格O原子的p轨道耦合度,这导致Fe2O(SeO3)2的Fe位点更容易吸附外部氧中间体。Fe2O(SeO3)2中的Fe-O-Se键改变了Fe原子的配位环境,优化了Fe位对氧中间体的吸附能。与Fe2O3/Fe3C@NC相比,Fe2O(SeO3)2/Fe3C@NC表现出ORR/OER催化活性的明显增强,在0.1MKOH电解质中ORR的半波电势为0.91V,在10mAcm-2时OER的低超电势为345mV在1.0MKOH电解质中。Fe2O(SeO3)2/Fe3C@NC基ZAB的峰值功率密度和比容量均高于Pt/C+RuO2-ZAB。以上结果表明,Fe2O(SeO3)2中不对称的Fe-O-Se键在提高ORR/OER对ZAB的双功能催化活性中起着关键作用。
    Here Fe2O(SeO3)2/Fe3C@NC catalysts with high performance were fabricated for zinc-air batteries (ZABs). The experimental results confirmed that the existence of Fe-O-Se bonds in Fe2O(SeO3)2 crystal phase, and the Fe-O-Se bonds could obviously enhance ORR and OER catalytic performance of Fe2O(SeO3)2/Fe3C@NC. Density functional theoretical calculations (DFT) confirmed that the Fe2O(SeO3)2 in Fe2O(SeO3)2/Fe3C@NC had a higher d-band center of Fe atom and a lower p-orbital coupling degree with its own lattice O atom than Fe2O3, which leads to Fe site of Fe2O(SeO3)2 being more likely to adsorb external oxygen intermediates. The Fe-O-Se bonds in Fe2O(SeO3)2 results in the modification of coordination environment of Fe atoms and optimizes the adsorption energy of Fe site for oxygen intermediates. Compared with Fe2O3/Fe3C@NC, the Fe2O(SeO3)2/Fe3C@NC showed obvious enhancements of ORR/OER catalytic activities with a half-wave potential of 0.91 V for ORR in 0.1 M KOH electrolyte and a low overpotential of 345 mV for OER at 10 mA cm-2 in a 1.0 M KOH electrolyte. The peak power density and specific capacity of Fe2O(SeO3)2/Fe3C@NC-based ZABs are higher than those of Pt/C+RuO2-ZABs. The above results demonstrate that the asymmetrical Fe-O-Se bonds in Fe2O(SeO3)2 plays a key role in improving the bifunctional catalytic activities of ORR/OER for ZABs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电氧化(EO)技术在废水处理中显示出巨大的潜力。然而,高能耗已成为阻碍其大规模实施的关键制约因素。在这里,我们设计了EO和4电子氧还原反应耦合系统(EO-4eORR)来取代传统的EO和氢析出反应(HER)耦合系统(EO-HER)。电解反应器的理论阴极电位从0V(vs.RHE)在她的1.23V(与RHE)在4eORR中,这大大降低了电抗器所需的工作电压。此外,我们证明了对流可以改善反应系统中氧气和有机污染物的传质,导致低阴极极化和高污染物去除率。与传统的EO-HER系统相比,EO-4eORR系统在空气曝气下去除95%总有机碳(TOC)的能耗大大降低至2.61kWh/kgTOC(仅考虑电解槽能耗),这优于以前报道的基于EO的水处理系统。本研究报告的结果为开发高效和可持续的基于EO的处理系统以去除废水中的有机污染物提供了一种新的技术模式。
    Electro-oxidation (EO) technology demonstrates significant potential in wastewater treatment. However, the high energy consumption has become a pivotal constraint hindering its large-scale implementation. Herein, we design an EO and 4-electron oxygen reduction reaction coupled system (EO-4eORR) to replace the traditional EO and hydrogen evolution reaction (HER) coupled system (EO-HER). The theoretical cathodic potential of the electrolytic reactor is tuned from 0 V (vs. RHE) in HER to 1.23 V (vs. RHE) in 4eORR, which greatly decreases the required operation voltage of the reactor. Moreover, we demonstrate that convection can improve the mass transfer of oxygen and organic pollutants in the reaction system, leading to low cathodic polarization and high pollutant removal rate. Compared with traditional EO-HER system, the energy consumption of the EO-4eORR system under air aeration for 95% total organic carbon (TOC) removal is greatly decreased to 2.61 kWh/kgTOC (only consider the electrolyzer energy consumption), which is superior to previously reported EO-based water treatment systems. The reported results in this study offer a new technical mode for development of highly efficient and sustainable EO-based treatment systems to remove organic pollutants in waste water.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非均相光芬顿技术的关键在于过氧化氢(H2O2)的高效生成。在这里,合成了一种新设计的具有异质结构的ZnO/ZnIn2S4复合材料。受益于内置电场的形成,抑制了光生电子和空穴的复合,降低了界面电荷转移电阻。重要的是,在ZnIn2S4中嵌入ZnO可以改善疏水性并形成微观三相界面,从而提高了对O2的捕获能力并为O2还原反应的发生提供了便利。更有趣的是,ZnO/ZnIn2S4复合材料中ZnIn2S4的存在可以降低关键中间体(OOH*)形成的吉布斯自由能(ΔG),这将加速H2O2的生成。因此,ZnO/ZnIn2S4复合材料在光催化H2O2生产中表现出优异的性能,在可见光照射下,60分钟内的最高产量约为897.6μmol/g/h。光诱导载流子的转移遵循S-方案型机制。光生空穴可以被药物残留物捕获(即,双氯芬酸钠)以加速H2O2的产生,而生成的H2O2可以与Fe2+结合,构建光-Fenton体系,实现双氯芬酸钠的高级降解,这主要与OH•的形成有关。此外,产生的H2O2可用于进行病原菌的灭活。总之,为今后的研究提供有价值的参考。
    The key to heterogeneous photo-Fenton technology lies in the efficient generation of hydrogen peroxide (H2O2). Herein, a newly-designed ZnO/ZnIn2S4 composite with heterostructure is synthesized. Benefiting from the formation of built-in electric field, the recombination of photoinduced electrons and holes is suppressed and interfacial charge transfer resistance is reduced. Importantly, the embedding of ZnO in ZnIn2S4 can improve the hydrophobicity and create microscopic three-phase interface, thereby boosting the capture capability for O2 and providing the convenience for the occurrence of O2 reduction reaction. More interestingly, the existence of ZnIn2S4 in the ZnO/ZnIn2S4 composite can reduce the Gibbs free energy (ΔG) of key intermediate (OOH*) formation, which will accelerate the generation of H2O2. As a result, the ZnO/ZnIn2S4 composite displays excellent performance in photocatalytic H2O2 production, and the highest yield was about 897.6 μmol/g/h within 60 min under visible light irradiation. The transfer of photoinduced carriers follows the S-scheme type mechanism. The photogenerated holes can be captured by drug residues (i.e., diclofenac sodium) to accelerate H2O2 production, while generated H2O2 can combine with Fe2+ to construct photo-Fenton system for achieving the advanced degradation of diclofenac sodium, which was mainly related to the formation of OH•. Furthermore, generated H2O2 can be applied for performing the inactivation of pathogenic bacteria. In short, current work will provide a valuable reference for future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单原子催化剂(SAC)是用于氧还原反应(ORR)的有前途的非贵重催化剂。不幸的是,ORRSAC通常具有不令人满意的活性,特别是稳定性差。在这里,我们报告原子分散的锰(Mn)嵌入氮和硫共掺杂的石墨烯作为一种有效和强大的电催化剂ORR在碱性电解质,实现0.883V的半波电位(E1/2)可逆氢电极(RHE),在0.1MKOH中进行40,000次循环伏安(CV)循环后,活性降解可忽略不计。引入硫(S)形成Mn-S配位,使单个Mn原子的自旋状态由高自旋变为低自旋,这有效地优化了单个Mn原子位点上的氧中间体吸附,从而大大提高了ORR活性。
    Single atom catalysts (SACs) are promising non-precious catalysts for oxygen reduction reaction (ORR). Unfortunately, the ORR SACs usually suffer from unsatisfactory activity and in particular poor stability. Herein, we report atomically dispersed manganese (Mn) embedded on nitrogen and sulfur co-doped graphene as an efficient and robust electrocatalyst for ORR in alkaline electrolyte, realizing a half-wave potential (E1/2) of 0.883 V vs. reversible hydrogen electrode (RHE) with negligible activity degradation after 40,000 cyclic voltammetry (CV) cycles in 0.1 M KOH. Introducing sulfur (S) to form Mn-S coordination changes the spin state of single Mn atom from high-spin to low-spin, which effectively optimizes the oxygen intermediates adsorption over the single Mn atomic sites and thus greatly improves the ORR activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    双原子催化剂(DAC)由于其显著的催化反应性而获得了显著的兴趣。然而,在DAC的制造中实现原子精确控制仍然是主要挑战。在这里,通过利用从FeCl3(s)原位生成的Fe2Cl6(g)二聚体,我们开发了双原子Fe催化剂(Fe2/NC)的直接升华转化合成策略。通过像差校正透射电子显微镜和X射线吸收精细结构(XAFS)光谱研究了Fe2/NC的结构。获得的Fe2/NC,从Fe2Cl6继承的Fe-Fe距离为0.3nm,显示出优异的氧还原性能,半波电位为0.90V(vs.RHE),超越商业Pt/C催化剂,Fe单原子催化剂(Fe1/NC),和它的对应物与普通和较短的Fe-Fe距离〜0.25nm(Fe2/NC-S)。密度泛函理论(DFT)计算和微观动力学分析表明,Fe2/NC中扩展的Fe-Fe距离对于O2在催化位点上的吸附和促进随后的质子化过程至关重要,从而提高催化性能。这项工作不仅引入了一种制造原子精确DAC的新方法,而且还提供了对双位点催化的金属间距离效应的更深入的理解。
    Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe-Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe-Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe-Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    空气污染物NO2的影响,研究了聚合物电解质膜燃料电池(PEMFC)的耐久性以及污染后PEMFC中受影响的电化学过程。在温度和相对湿度(RH)的不同操作条件下,对PEMFC进行了现场电化学阻抗谱(EIS)测量。将NO2引入阴极入口流。使用称为ISGP(遗传编程阻抗谱)的遗传算法对EIS测量进行分析,以获得弛豫时间的分布函数(DFRT,a.k.a.DRT)模型。利用ISGP使我们能够区分PEMFC中的各种现象,并研究它们如何受到NO2污染的影响。此外,实验证明了该缓解方法在被污染后冲洗PEMFC并再生其性能的有效性,特别是在低工作温度。在受污染的PEMFC上进行能量色散X射线光谱(EDS)技术,以在缓解步骤后检测FC的气体扩散层和催化剂层中任何氮组分的存在。还对被污染的电池进行循环伏安法,以通过评估双层电容来确定污染物对阴极的电化学活性表面积的影响。
    The effect of NO2, an air pollutant, on the durability of polymer electrolyte membrane fuel cells (PEMFCs) and the affected electrochemical processes in the PEMFC following the contamination were investigated. In-situElectrochemical Impedance Spectroscopy (EIS) measurements were conducted on PEMFCs under different operating conditions of temperature and relative humidity (RH). NO2 was introduced to the cathode inlet flow. Analyses of the EIS measurements were performed using a genetic algorithm called ISGP (Impedance Spectroscopy by Genetic Programming) to obtain the distribution function of relaxation times (DFRT, a.k.a. DRT) models. Utilizing ISGP enabled us to differentiate the various phenomena in PEMFC and study how they are affected by NO2 contamination. Moreover, the experiments demonstrate the effectiveness of the mitigation method to flush the PEMFC and regenerate its performance after being contaminated, particularly at low operating temperatures. Energy-dispersive X-ray spectroscopy (EDS) technique is performed on the contaminated PEMFC to detect the presence of any nitrogen components in the FC\'s gas diffusion layer and the catalyst layer post the mitigation step. Cyclic Voltammetry is also performed on the contaminated cell to determine the effect of the contamination on the electrochemically active surface area of the cathode by evaluating the double-layer capacitance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号