overall water splitting

整体水分解
  • 文章类型: Journal Article
    具有优异稳定性和稳定活性的非贵金属双功能催化剂的产生和增强对于在碱性介质中实现水分解是必要的。本文介绍了一种结合水热和高温硒化技术制备镍钴双金属硒化物(NiCo-Sex/CF)的方法。NiCo-Sex/CF显示出作为水分离催化剂的巨大潜力。催化剂的电子结构和活性中心可以通过硫和硒的双重掺杂来改变。导致在变化的反应条件下增加的选择性和活性。该方法还提供了简单的制备方法和对宽范围的催化反应的适用性的益处。实验结果表明,当使用该电催化剂作为OER催化剂时,194mV的超电势会产生10mAcm-2的电流密度。当用作HER催化剂时,电催化剂仅需要76mV的过电位才能产生10mAcm-2的电流密度。此外,1.5V的电压可以驱动水的整体分解,以实现10mAcm-2的电流密度。这项研究强调了硒化硫双掺杂催化剂在科学研究和实际应用中的潜力。
    The creation and enhancement of non-precious metal bifunctional catalysts with superior stability and stabilizing activity is necessary to achieve water splitting in alkaline media. The paper presents a method for preparing nickel-cobalt bimetallic selenides (NiCo-Sex/CF) using a combination of hydrothermal and high-temperature selenization techniques. NiCo-Sex/CF shows great potential as a catalyst for water separation. The catalyst\'s electronic structure and active centre can be modified by double doping with sulfur and selenium, resulting in increased selectivity and activity under varying reaction conditions. This method also offers the benefits of a simple preparation process and applicability to a wide range of catalytic reactions. Experimental results demonstrate that an overpotential of 194 mV produces a current density of 10 mA cm-2 when using this electrocatalyst as an OER catalyst. When used as a HER catalyst, the electrocatalyst required an overpotential of only 76 mV to generate a current density of 10 mA cm-2.Furthermore, a voltage of 1.5 V can drive the overall decomposition of water to achieve a current density of 10 mA cm-2. This study highlights the potential of sulfur-selenide double-doped catalysts for both scientific research and practical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着全球环境污染和资源匮乏的加剧,氢作为化石燃料的理想替代品,由于其高能量密度和无污染的性质,已经引起了极大的关注。因此,迫切需要开发用于制氢的电催化水分解电极。在这项研究中,通过两步水热法在NF上合成了具有牡丹花状微纳米阵列(MoS2/Co0.8Fe0.2Se2/NixSey/泡沫镍(NF))的超润湿硒催化电极。通过调节Co/Fe比,可以获得最佳的硒化钴铁催化活性。通过掺入过渡金属硒化物增强了电极的固有催化活性,然后用作随后在表面上加载MoS2纳米花的前体,以完全暴露活性位点。此外,电极的超润湿性能加速电解质渗透和电子/传质,同时也有利于气泡从电极表面脱离,从而防止“气泡屏蔽效应”。这导致优异的析氧反应(OER)和析氢反应(HER)性能,以及整体水分解能力。在1.0MKOH溶液中,对于OER和HER,电极仅需166和195mV的过电位即可达到10mAcm-2的电流密度,分别。当用作双功能催化电极时,仅需要1.60V的电压来驱动电解槽达到10mAcm-2的电流密度。此外,风能和太阳能驱动的水分解的实验室模拟验证了建立可持续能源制氢生产链的可行性。这项工作为低过潜力的准备工作提供了新的见解,通过合理调整元素比例和探索电极表面润湿性的变化,获得了高催化活性的超亲水和水下超氧催化电极。
    With the intensification of global environmental pollution and resource scarcity, hydrogen has garnered significant attention as an ideal alternative to fossil fuels due to its high energy density and nonpolluting nature. Consequently, the urgent development of electrocatalytic water-splitting electrodes for hydrogen production is imperative. In this study, a superwetting selenide catalytic electrode with a peony-flower-shaped micronano array (MoS2/Co0.8Fe0.2Se2/NixSey/nickel foam (NF)) was synthesized on NF via a two-step hydrothermal method. The optimal catalytic activity of cobalt-iron selenide was achieved by adjusting the Co/Fe ratio. The intrinsic catalytic activity of the electrodes was enhanced by incorporating transition metal selenides, which then served as a precursor for the subsequent loading of MoS2 nanoflowers on the surface to fully expose the active sites. Furthermore, the superwetting properties of the electrode accelerated electrolyte penetration and electron/mass transfer, while also facilitating bubble detachment from the electrode surface, thereby preventing \"bubble shielding effect\". This resulted in superior oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance, as well as overall water splitting capabilities. In a 1.0 M KOH solution, the electrode required only 166 and 195 mV overpotential to achieve a current density of 10 mA cm-2 for OER and HER, respectively. When functioning as a bifunctional catalytic electrode, only 1.60 V of voltage was necessary to drive the electrolyzer to reach a current density of 10 mA cm-2. Moreover, laboratory simulations of wind and solar energy-driven water splitting validated the feasibility of establishing a sustainable energy-to-hydrogen production chain. This work provides new insights into the preparation of low-overpotential, high-catalytic-activity superhydrophilic and underwater superaerophobic catalytic electrodes by rationally adjusting elemental ratios and exploring changes in electrode surface wettability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计高效,用于整体水分解的不含贵金属的低成本双功能电催化剂仍然是一个重大挑战。在这项工作中,通过简单的水热和硒化方法开发了Ce掺杂的CoSe2纳米针阵列与MXene(Ce-CoSe2/MXene)的界面耦合。Ti3AlC2具有广阔的比表面积和良好的亲水性,结合Ce掺杂和硒化优化的电子结构和丰富的活性位点,Ce-CoSe2/MXene电极具有优异的双功能电催化性能。具体来说,这种异质结构在10mAcm-2时实现了34mV的低析氢反应(HER)超电势,在100mAcm-2时的析氧反应(OER)超电势为279mV,在10mAcm-2时的总水分解(OWS)电势低至1.45V。原位拉曼光谱表明,表面重建将提高催化活性和稳定性。理论计算表明,Ce-CoSe2/MXene可以通过降低动力学势垒来改善中间体的吸附并促进HER/OER过程。从而增强电催化活性。这项研究标志着低成本开发的实质性进展,用于整体水分解的有效电催化剂。
    Designing highly effective, low-cost bifunctional electrocatalysts without noble metals for overall water splitting remains a significant challenge. In this work, interfacial coupling of Ce-doped CoSe2 nanoneedle arrays with MXene (Ce-CoSe2/MXene) is developed via the facile hydrothermal and selenization methods. The extensive specific surface area and favorable hydrophilicity of Ti3AlC2, combined with the optimized electronic structure and abundant active sites from Ce-doping and selenization, contribute to the exceptional bifunctional electrocatalytic performance of the Ce-CoSe2/MXene electrode. Specifically, this heterostructure achieves a low hydrogen evolution reaction (HER) overpotential of 34 mV at 10 mA cm-2, an oxygen evolution reaction (OER) overpotential of 279 mV at 100 mA cm-2, and an overall water splitting (OWS) potential as low as 1.45 V at 10 mA cm-2. In-situ Raman spectroscopy reveals that surface reconstruction would improve catalytic activity and stability. Theoretical calculations indicate that the Ce-CoSe2/MXene can improve the adsorption of intermediates and facilitate HER/OER process by lowering the kinetic barrier, thereby enhancing electrocatalytic activity. This research marks a substantial advancement in the development of low-cost, efficient electrocatalysts for overall water splitting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    空位工程和异质结构构造被认为是在可再生能源转换中协同促进氢气生产的有效方法。在这里,实施了选择性磷化策略,通过仅对前体中的Co和Fe原子进行可控磷化来制造珊瑚状ZnO/FeCoP@N掺杂的碳分层微球(ZnO/FeCoP@NCHMS)。它是通过在锌钴配位聚合物微球的表面上生成ZnCoFeLDH而形成的。然后,通过对ZnO/FeCoP@NCHMS进行还原处理,实现了具有丰富磷空位(Pv)的创新ZnO/FeCoPv@NCHMS。磷空位的引入可以优化金属磷化物的电子结构,加速活性物种的重构,从而加快反应动力学。同样,大量的异质界面大大加快了电子和质子的转移,暴露超高活性位点。凭借这些迷人的人物和独特的珊瑚般的等级建筑,制备的ZnO/FeCoPv@NCHMS显示出优异的电催化活性,在碱性介质中,10mAcm-2时,析氧反应(OER)和析氢反应(HER)的过电势低至177和173mV,分别。令人印象深刻的是,由ZnO/FeCoPv@NCHMS组装的水电解装置仅需要1.508V的电池电压即可达到10mAcm-2的电流密度。此外,ZnO/FeCoPv@NCHMS也表现出非凡的耐久性,在水分解过程中持续运行至少28小时(在100mAcm-2下)。这项研究为整体水分解的缺陷调节和异质界面构建提供了新的见解。
    Vacancy engineering and heterostructure construction are regarded as potent approaches for synergistically boosting hydrogen production in renewable energy conversion. Herein, a selective phosphorization strategy was implemented to fabricate coral-like ZnO/FeCoP@N-doped carbon hierarchical microspheres (ZnO/FeCoP@NCHMS) via only controllably phosphorizing the Co and Fe atoms in a precursor, which was formed by generating ZnCoFe LDH on the surface of a zinc cobalt coordination polymer microsphere. Then, by adopting a reduction treatment for ZnO/FeCoP@NCHMS, the innovative ZnO/FeCoPv@NCHMS with abundant phosphorus vacancies (Pv) was realized. The introduction of phosphorus vacancy could optimize the electronic structures of metal phosphides and accelerate the reconstruction of active species, thus speeding up the reaction kinetic. Likewise, the plentiful heterointerfaces greatly expedite the transfer of electrons and protons, exposing ultra-high active sites. By virtue of these fascinating characters and the unique coral-like hierarchical architecture, the as-prepared ZnO/FeCoPv@NCHMS reveal preeminent electrocatalytic activities, and the overpotentials for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) are as low as 177 and 173 mV at 10 mA cm-2 in alkaline medium, respectively. Impressively, the water electrolysis device assembled by ZnO/FeCoPv@NCHMS requires a mere cell voltage of 1.508 V to attain a current density of 10 mA cm-2. Furthermore, the ZnO/FeCoPv@NCHMS also demonstrate extraordinary durability, sustaining operation for at least 28 h (at 100 mA cm-2) during the water splitting process. This study provides novel insights into defect regulation and heterointerface construction for overall water splitting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在不断寻求用于制氢的成本有效且耐用的电催化剂-可持续能源转化的关键因素-二硫化钼(MoS2)的1T相由于其热力学不稳定性以及效率与耐久性之间的权衡而面临挑战。相反,MoS2的2H相,通常忽略金属1T相,遭受其惰性性质和有限的活性位点。为了克服这些限制,这项研究采用了简单的水热合成策略,将MoS2的1T和2H相与Ni3S2耦合,形成1T-和2H-MoS2/Ni3S2异质结。由Ni3S2丰富的活性位点增强,提高电子传输能力,协同界面效应,和更好的结构稳定性,这些异质结在低过电位下实现超过500mAcm-2的高电流密度,以及碱性电解质中析氢反应(HER)和析氧反应(OER)的延长耐久性。值得注意的是,使用1T-MoS2/Ni3S2作为阴极和2H-MoS2/Ni3S2作为阳极的电解器组件在20mAcm-2下表现出1.58V的竞争电压,与其他非贵金属基电催化剂相比,在总体水分解方面表现出优异的性能。这项研究不仅提供了一种可行的方法来合成有效和稳定的电催化剂,用于使用过渡金属基非均相结构的水分解,而且还解决了与MoS2的1T和2H相相关的基本挑战。
    In the ongoing quest for cost-effective and durable electrocatalysts for hydrogen production-a critical element of sustainable energy transformation-the 1T phase of Molybdenum Disulfide (MoS2) faces challenges due to its thermodynamic instability and the trade-off between efficiency and durability. Conversely, the 2H phase of MoS2, often disregarded in favor of the metallic 1T phase, suffers from its inert nature and limited active sites. To overcome these limitations, this study employs a straightforward hydrothermal synthesis strategy that couples both 1T and 2H phases of MoS2 with Ni3S2, forming 1T- and 2H- MoS2/Ni3S2 heterojunctions. Enhanced by Ni3S2\'s abundant active sites, improved electron transport capabilities, synergistic interface effects, and better structural stability, these heterojunctions achieve a high current density exceeding 500 mA cm-2 at low overpotentials, along with prolonged durability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolytes. Remarkably, an electrolyzer assembly utilizing 1T-MoS2/Ni3S2 as the cathode and 2H-MoS2/Ni3S2 as the anode demonstrates a competitive voltage of 1.58 V at 20 mA cm-2, showcasing superior performance in overall water splitting compared to other non-noble metal-based electrocatalysts. This study not only offers a viable method for synthesizing efficient and stable electrocatalysts for water splitting using transition metal-based heterogeneous structures but also addresses the fundamental challenges associated with 1T and 2H phases of MoS2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,我们在泡沫镍(Co-NiSMoO/NF)上原位生长了共结合的NiOSO4-NiMoO4异质结构。将S2-和MoO42-引入CoNi-ZIF前体导致组成和电子重构,产生Co-NiSMoO/NF纳米结构。形态学上的吸引人的特征,composition,和电子结构共同赋予它们高的电催化性能。因此,Co-NiSMoO/NF纳米结构对析氧表现出优异的电催化性能,尿素氧化,因此整个水/尿素分解反应(OER/UOR/OWS/OUS)。具体来说,Co-NiSMoO/NF显示出高的电催化OER活性,在碱性条件下,过电位为172mV@10mAcm-2,238mV@20mAcm-2,278mV@50mAcm-2,308mV@100mAcm-2。对于UOR,过电势低至1.318V@10mAcm-2,1.330V@20mAcm-2,1.346V@50mAcm-2和1.401V@100mAcm-2。尤其是,记录电池的电压甚至下降到1.446V@10mAcm-2到OUS。此外,Co-NiSMoO/NF电催化剂对OER仍然稳定,UOR,和OUS甚至长达100小时。更重要的是,我们还以太阳能驱动的绿色方式实现了H2生产。在太阳能电池板上的阳光照射下,H2生产速度甚至高达408Lh-1m-2。
    Herein, we grew in situ Co-incorporated NiOSO4-NiMoO4 heterostructures on nickel foam (Co-NiSMoO/NF). The introduction of S2- and MoO42- into CoNi-ZIF precursor leads to the compositional and electronic reconstruction, resulting in the Co-NiSMoO/NF nanostructures. The attractive features in the morphology, composition, and electronic structure cooperatively endow them with high electrocatalytic performances. As a result, the Co-NiSMoO/NF nanostructures exhibit superior electrocatalytic performances to oxygen evolution, urea oxidation, and thus overall water/urea splitting reactions (OER/UOR/OWS/OUS). Specifically, the Co-NiSMoO/NF shows a high electrocatalytic OER activity, with low overpotentials of 172 mV@10 mA cm-2, 238 mV@20 mA cm-2, 278 mV@50 mA cm-2, 308 mV@100 mA cm-2 in alkaline. For UOR, the overpotential is just as low as 1.318 V@10 mA cm-2, 1.330 V@20 mA cm-2, 1.346 V@50 mA cm-2, and 1.401 V@100 mA cm-2. Especially, the voltage of the record cell even drops to 1.446 V@10 mA cm-2 to OUS. Furthermore, the Co-NiSMoO/NF electrocatalysts still stable to OER, UOR, and OUS even for up to 100 h. More importantly, we also realized H2 production in a green manner driven by solar. Under solar illumination on a solar panel, H2 production speed is even as high as 408 L h-1 m-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用半导体的光催化水分解是将太阳能转换为清洁能源的有前途的方法。然而,诸如缓慢的水氧化动力学和光催化剂有限的光吸收等挑战导致低的太阳能到氢转化效率(STH)。在这里,我们开发了一种使用I3-/I-作为穿梭氧化还原对的光催化整体水分解系统,以桥接产生H2的半反应与产生O2的半反应。该系统使用负载有MoS2(PMA2PbI4/MoS2)的苄基碘化铵(PMA2PbI4,PMA=C6H5CH2NH2)的卤化物钙钛矿作为H2析出光催化剂,和负载RuOx的WO3(WO3/RuOx)作为O2析出光催化剂,以化学计量比实现H2/O2生产,具有2.07%的优异的STH。这项工作在卤化物钙钛矿HI裂解系统中的I3-/I-穿梭氧化还原对的帮助下,为光催化水裂解提供了一条弯路,并启发了一个整合和利用太阳能驱动水裂解的多催化策略。
    Photocatalytic water splitting using semiconductors is a promising approach for converting solar energy to clean energy. However, challenges such as sluggish water oxidation kinetics and limited light absorption of photocatalyst cause low solar-to-hydrogen conversion efficiency (STH). Herein, we develop a photocatalytic overall water splitting system using I3-/I- as the shuttle redox couple to bridge the H2-producing half-reaction with the O2-producing half-reaction. The system uses the halide perovskite of benzylammonium lead iodide (PMA2PbI4, PMA = C6H5CH2NH2) loaded with MoS2 (PMA2PbI4/MoS2) as the H2 evolution photocatalyst, and the RuOx-loaded WO3 (WO3/RuOx) as the O2 evolution photocatalyst, achieving a H2/O2 production in stoichiometric ratio with an excellent STH of 2.07%. This work provides a detour route for photocatalytic water splitting with the help of I3-/I- shuttle redox couple in the halide perovskite HI splitting system and enlightens one to integrate and utilize multi catalytic strategies for solar-driven water splitting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计和合成稳定的是一项具有挑战性的任务,和高性能非贵金属双功能水分解催化剂。在这里,强调了Se空位与界面工程之间的耦合,通过双官能普鲁士蓝类似物(PBA)衍生物(VSe-CoFeSe@MXene/NF)的原位相变,在MXene改性的泡沫镍(NF)上合成了独特的CoFeSe中空纳米立方体结构。DFT理论表明,Se空位和界面工程调节了中间体的表面电子结构并优化了中间体的表面吸附能。实验数据还证实,制备的CoFeSe@MF催化剂表现出先进的电催化性能,驱动10mAcm-2的电流密度需要283mV(OER)和67mV(HER)。值得注意的是,它被组装成一个用于整体水分解的双电极系统,在10mAcm-2的电流下仅需要1.57V的低电池电位,以及48h的出色耐久性。该策略有望为高效协作集成水分解电催化剂的设计和构建提供新的方向。
    It is a challenging task to design and synthesize stable, and high-performance non-precious metals bifunctional catalysts for water-splitting. Herein, the coupling between Se vacancy and interface engineering is highlighted to synthesize a unique CoFeSe hollow nanocubes structure on MXene-modified nickel foam (NF) by in-situ phase transition from bifunctionality prussian blue analogue (PBA) derivatives (VSe-CoFeSe@MXene/NF). DFT theory reveals that the Se vacancy and interface engineering modulate the surface electronic structure and optimize the surface adsorption energy of the intermediates. Experimental data also confirm that the as-prepared CoFeSe@MF catalyst exhibits advanced electrocatalytic properties, 283 mV (OER) and 67 mV (HER) are required to drive the current density of 10 mA cm-2. Notably, it is assembled into a two-electrode system for integral water decomposition, which only requires a low cell potential of 1.57 V at current of 10 mA cm-2, together with excellent durability for 48 h. The strategy is expected to provide a new direction for the design and construction of highly efficient collaborative integrated water decomposition electrocatalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计健壮,用于氧还原反应(ORR)的高效且廉价的三官能电催化剂,析氧反应(OER)和析氢反应(HER)对于可充电锌空气电池和水分解装置具有重要意义。为此,构建基于过渡金属的异质结构是一种有效的策略。在这里,在多孔N上生长的双相Co9S8-CoMo2S4异质结构,研究了通过一锅法合成的S共掺杂碳基质(Co9S8-CoMo2S4/NSC)作为三官能ORR/OER/HER电催化剂。优化的Co9S8-CoMo2S4/NSC2显示ORR具有0.86V的半波电位(与RHE)和OER和HER在10mAcm-2处的过电位分别为280和89mV,分别,优于迄今为止报道的大多数过渡金属基三官能电催化剂。基于Co9S8-CoMo2S4/NSC2的锌空气电池(ZAB)具有高开路电压(1.41V),大容量(804mAhg-1)和高度稳定的循环能力(97h在10mAcm-2)。此外,制备的基于Co9S8-CoMo2S4/NSC2的串联ZAB可以自驱动相应的水电解槽。双相Co9S8-CoMo2S4异质结构不仅提供了多类型的活性位点来驱动ORR,OER和她,而且在两相之间的高速电荷转移通道提高了协同效应和反应动力学。
    Designing robust, efficient and inexpensive trifunctional electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is significant for rechargeable zinc-air batteries and water-splitting devices. To this end, constructing heterogenous structures based on transition metals stands out as an effective strategy. Herein, a dual-phase Co9S8-CoMo2S4 heterostructure grown on porous N, S-codoped carbon substrate (Co9S8-CoMo2S4/NSC) via a one-pot synthesis is investigated as the trifunctional ORR/OER/HER electrocatalyst. The optimized Co9S8-CoMo2S4/NSC2 exhibits that ORR has a half-wave potential of 0.86 V (vs. RHE) and the overpotentials at 10 mA cm-2 for OER and HER are 280 and 89 mV, respectively, superior to most transition-metal based trifunctional electrocatalysts reported to date. The Co9S8-CoMo2S4/NSC2-based zinc-air battery (ZAB) has a high open-circuit voltage (1.41 V), large capacity (804 mA h g-1) and highly stable cyclability (97 h at 10 mA cm-2). In addition, the prepared Co9S8-CoMo2S4/NSC2-based ZAB in series can self-drive the corresponding water electrolyzer. The dual-phase Co9S8-CoMo2S4 heterostructure provides not only multi-type active sites to drive the ORR, OER and HER, but also high-speed charge transfer channels between two phases to improve the synergistic effect and reaction kinetics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高效,稳定的双功能电催化剂的简便合成对于在储能系统中生产清洁的氢气至关重要。在这里,通过水热法在多孔泡沫镍(标记为Rh-Ni3S2/Co3S4/NF)上轻松制备了低Rh掺杂的花状Ni3S2/Co3S4异质结构。对于对照组中的析氧反应(OER)和析氢反应(HER),严格研究了前体类型与形态结构和催化性能的相关性。催化剂内的低Rh掺杂在提高催化特性中起重要作用。所得催化剂显示出较小的过电位197和78mV,以驱动OER和HER在碱性电解质中的电流密度为10mAcm-2,分别。并且电势仅需要1.71V来驱动水分解装置中100mAcm-2的电流密度。它反映了自制Rh-Ni3S2/Co3S4/NF的优异的整体水分解。该策略为在水分解装置中制备过渡金属硫化物基电催化剂提供了一些建设性的启示。
    Facile synthesis of high-efficiency and stable bifunctional electrocatalyst is essential for producing clean hydrogen in energy storage systems. Herein, low Rh-doped flower-like Ni3S2/Co3S4 heterostructures were facilely prepared on porous nickel foam (labeled Rh-Ni3S2/Co3S4/NF) by a hydrothermal method. The correlation of the precursors types with the morphological structures and catalytic properties were rigorously investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the control groups. The low Rh doping within the catalyst played important role in boosting the catalytic characteristics. The resulting catalyst showed the smaller overpotentials of 197 and 78 mV to drive a current density of 10 mA cm-2 for the OER and HER in alkaline electrolyte, respectively. And the potential only required 1.71 V to drive a current density of 100 mA cm-2 in a water splitting device. It reflects excellent overall water splitting of the home-made Rh-Ni3S2/Co3S4/NF. This strategy shed some constructive light for preparing transition metal sulfide-based electrocatalysts in water splitting devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号