osteochondral regeneration

骨软骨再生
  • 文章类型: Journal Article
    关节软骨再生是骨科医学的主要挑战。内皮祖细胞(EPCs)是用于再生医学应用的有前途的细胞来源。然而,它们在软骨再生中的作用和功能尚不清楚。此外,温敏性壳聚糖水凝胶已广泛应用于组织工程,但是这些含有血管谱系细胞的水凝胶用于软骨修复的进一步开发是不够的。因此,这项研究旨在表征EPCs进行内皮-间充质干细胞转分化和软骨分化的能力,并研究软骨形成EPC接种的热敏壳聚糖-接枝聚(N-异丙基丙烯酰胺)(CEPC-CSPN)支架在兔骨软骨缺损(OCD)模型中改善愈合的能力。分离EPCs,并通过转化生长因子-β1(TGF-β1)诱导内皮-间质转化(EndMT);这些EPCs随后被称为转分化EPCs(tEPCs)。通过一系列体外试验评估了tEPCs的干细胞样特性和软骨形成潜能。此外,评估CEPC-CSPN支架对OCD修复的影响。我们的体外结果证实,用TGF-β1处理EPC诱导EndMT和获得干细胞样特性,生产TEPC。在诱导tEPCs(CEPCs)的软骨分化后,25天后,细胞表现出显著增强的软骨形成和软骨细胞表面标志物。TGF-β1诱导的EPC分化由TGF-β/Smad和细胞外信号调节激酶(Erk)途径介导。CEPC-CSPN支架在体内重建了完整的半透明软骨并修复了软骨下骨,表现出再生能力。总的来说,我们的结果表明,CEPC-CSPN支架诱导OCD修复,代表了关节软骨再生的一种有希望的方法。
    Articular cartilage regeneration is a major challenge in orthopedic medicine. Endothelial progenitor cells (EPCs) are a promising cell source for regenerative medicine applications. However, their roles and functions in cartilage regeneration are not well understood. Additionally, thermosensitive chitosan hydrogels have been widely used in tissue engineering, but further development of these hydrogels incorporating vascular lineage cells for cartilage repair is insufficient. Thus, this study aimed to characterize the ability of EPCs to undergo endothelial-mesenchymal stem cell transdifferentiation and chondrogenic differentiation and investigate the ability of chondrogenic EPC-seeded thermosensitive chitosan-graft-poly (N-isopropylacrylamide) (CEPC-CSPN) scaffolds to improve healing in a rabbit osteochondral defect (OCD) model. EPCs were isolated and endothelial-to-mesenchymal transition (EndMT) was induced by transforming growth factor-β1 (TGF-β1); these EPCs are subsequently termed transdifferentiated EPCs (tEPCs). The stem cell-like properties and chondrogenic potential of tEPCs were evaluated by a series of in vitro assays. Furthermore, the effect of CEPC-CSPN scaffolds on OCD repair was evaluated. Our in vitro results confirmed that treatment of EPC with TGF-β1 induced EndMT and the acquisition of stem cell-like properties, producing tEPCs. Upon inducing chondrogenic differentiation of tEPCs (CEPCs), the cells exhibited significantly enhanced chondrogenesis and chondrocyte surface markers after 25 days. The TGF-β1-induced differentiation of EPCs is mediated by both the TGF-β/Smad and extracellular signal-regulated kinase (Erk) pathways. The CEPC-CSPN scaffold reconstructed well-integrated translucent cartilage and repaired subchondral bone in vivo, exhibiting regenerative capacity. Collectively, our results suggest that the CEPC-CSPN scaffold induces OCD repair, representing a promising approach to articular cartilage regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨软骨缺损是由关节炎引起的一种复杂的组织丢失疾病,高能创伤,还有许多其他原因。由于骨软骨组织独特的结构特征,修复过程复杂,涉及透明软骨和软骨下骨的再生。然而,目前的临床治疗往往达不到预期的结果.组织工程生物支架,尤其是那些通过三维(3D)打印创建的,由于其精确可控的3D结构,为骨软骨缺损提供有希望的解决方案。3D打印生物支架的微观结构为细胞粘附和增殖提供了极好的物理环境,以及营养运输。传统的3D打印生物支架仅提供物理刺激,而装载药物的3D生物支架通过将药物治疗与物理刺激协同结合来加速组织修复过程。在这次审查中,综述了骨软骨组织的生理特点和骨软骨缺损的治疗现状。随后,讨论了载药生物支架的最新进展,并在分类方面进行了强调,特点,和应用。脚手架设计的观点,药物控制释放,还讨论了生物安全问题。希望本文能对骨软骨再生生物支架的设计和开发提供有价值的参考,并为载药生物支架在临床治疗中的应用铺平道路。
    Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:创伤引起的骨软骨缺损的发生率,关节炎或肿瘤每年都在增加,但是在治疗方法方面没有取得进展。由于软骨和软骨下骨的异质性结构和生物学特性,骨软骨修复的整合仍然是一个挑战。
    结果:在本研究中,根据解剖学特点,设计了一种新型双层水凝胶支架,用于模拟浅表软骨和软骨下骨。该支架显示出良好的生物相容性,添加抗氧化剂纳米酶(LiMn2O4)可通过上调抗氧化蛋白来促进活性氧(ROS)的清除。软骨层有效地防止软骨细胞在炎症微环境中降解。软骨下仿生水凝胶支架通过体外调节AMPK通路促进大鼠骨髓间充质干细胞(BMSCs)成骨分化。最后,体内大鼠临床前骨软骨缺损模型证实双层水凝胶支架能有效促进软骨和软骨下骨的再生。
    结论:一般来说,我们的仿生水凝胶支架具有调节炎症微环境的能力,可以有效修复骨软骨缺损。该策略为具有异质结构和生物学特性的组织再生提供了有希望的方法。
    BACKGROUND: The incidence of osteochondral defects caused by trauma, arthritis or tumours is increasing annually, but progress has not been made in terms of treatment methods. Due to the heterogeneous structure and biological characteristics of cartilage and subchondral bone, the integration of osteochondral repair is still a challenge.
    RESULTS: In the present study, a novel bilayer hydrogel scaffold was designed based on anatomical characteristics to imitate superficial cartilage and subchondral bone. The scaffold showed favourable biocompatibility, and the addition of an antioxidant nanozyme (LiMn2O4) promoted reactive oxygen species (ROS) scavenging by upregulating antioxidant proteins. The cartilage layer effectively protects against chondrocyte degradation in the inflammatory microenvironment. Subchondral bionic hydrogel scaffolds promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) by regulating the AMPK pathway in vitro. Finally, an in vivo rat preclinical osteochondral defect model confirmed that the bilayer hydrogel scaffold efficiently promoted cartilage and subchondral bone regeneration.
    CONCLUSIONS: In general, our biomimetic hydrogel scaffold with the ability to regulate the inflammatory microenvironment can effectively repair osteochondral defects. This strategy provides a promising method for regenerating tissues with heterogeneous structures and biological characteristics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    支架的微创部署是软骨和骨缺损再生的关键安全因素。成骨主要依赖于细胞-基质相互作用,而软骨形成依赖于细胞-细胞聚集。骨基质膨胀需要骨传导支架降解。然而,软骨细胞聚集促进排斥支架表面,和最小的支架降解支持软骨再生的无血管性质。这里,通过将骨传导性羟基磷灰石(HAp)与软骨传导性形状记忆聚合物(SMP)整合来开发满足骨软骨再生的这些要求的材料。由形状记忆功能衍生的固定性和支架的恢复使微创展开和扩展能够填补不规则缺陷。SMP表面上的结晶相通过抑制水渗透和随后的蛋白质吸附来抑制细胞聚集。然而,HAp缀合SMP(H-SMP)通过使用晶体峰限制细胞聚集来增强表面粗糙度和随之而来的细胞-基质相互作用。小鼠皮下植入后,水解H-SMP加速了支架降解,与单独观察到的SMP降解两个月相比。发现H-SMP和SMP可促进成骨和软骨形成,分别,在体外和体内,包括使用二元支架形式的大鼠骨软骨缺损的再生,表明这种材料有望用于骨软骨再生。
    The minimally invasive deployment of scaffolds is a key safety factor for the regeneration of cartilage and bone defects. Osteogenesis relies primarily on cell-matrix interactions, whereas chondrogenesis relies on cell-cell aggregation. Bone matrix expansion requires osteoconductive scaffold degradation. However, chondrogenic cell aggregation is promoted on the repellent scaffold surface, and minimal scaffold degradation supports the avascular nature of cartilage regeneration. Here, a material satisfying these requirements for osteochondral regeneration is developed by integrating osteoconductive hydroxyapatite (HAp) with a chondroconductive shape memory polymer (SMP). The shape memory function-derived fixity and recovery of the scaffold enabled minimally invasive deployment and expansion to fill irregular defects. The crystalline phases on the SMP surface inhibited cell aggregation by suppressing water penetration and subsequent protein adsorption. However, HAp conjugation SMP (H-SMP) enhanced surface roughness and consequent cell-matrix interactions by limiting cell aggregation using crystal peaks. After mouse subcutaneous implantation, hydrolytic H-SMP accelerated scaffold degradation compared to that by the minimal degradation observed for SMP alone for two months. H-SMP and SMP are found to promote osteogenesis and chondrogenesis, respectively, in vitro and in vivo, including the regeneration of rat osteochondral defects using the binary scaffold form, suggesting that this material is promising for osteochondral regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了解决海藻酸盐和明胶作为单独的水凝胶的局限性,部分氧化的海藻酸盐,藻酸盐二醛(ADA),通常与明胶组合以制备ADA-GEL水凝胶。这些水凝胶提供可调的性能,可控降解,和适合3D生物打印和组织工程应用的刚度。几个工艺变量影响水凝胶的最终性质,包括氧化程度,明胶含量和交联剂的类型。此外,在3D打印结构中,孔径和可能添加填充剂以制备水凝胶复合材料也影响最终的物理和生物学性质。本研究利用了13篇研究论文的数据集,包括33种独特的ADA浓度组合,明胶浓度,CaCl2和微生物转谷氨酰胺酶(mTG)浓度(作为交联剂),孔径,生物活性玻璃(BG)填料含量,和一个确定的水凝胶的目标性质,刚度,利用ExtremeBoost(XGB)机器学习算法创建预测模型,以了解这些参数对水凝胶刚度的综合影响。ADA-GEL水凝胶的刚度明显受ADA与GEL比率的影响,和较高的明胶含量不同的ADA凝胶浓度削弱了支架,可能是由于未结合的明胶的存在。孔径和包含BG颗粒填料也对刚度具有显著影响;较小的孔径和较高的BG含量导致刚度增加。ADA-GEL组成的优化和BG填料的加入是定制这些3D打印水凝胶刚度的关键决定因素。通过对现有数据的分析发现。
    To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨软骨再生涉及软骨和软骨下骨的高度挑战性和复杂的重建。硅(Si)离子在骨骼发育中起着至关重要的作用。目前Si离子的研究主要集中在骨修复方面,通过使用具有复杂离子成分的硅酸盐生物陶瓷。然而,目前尚不清楚硅离子是否对软骨再生有重要影响。开发仅释放Si离子以同时促进软骨下骨修复和刺激软骨再生的支架至关重要。硅藻土(DE)是一种能稳定释放硅离子的天然硅藻土沉积物,以其丰富的可用性而闻名,低成本,和环境友好。在这里,分层骨软骨修复支架通过将梯度DE并入GelMA水凝胶而独特地设计。添加DE微粒为控制Si离子释放提供了特定的Si源,不仅能促进兔骨髓间充质干细胞(rBMSCs)成骨分化,还能促进软骨细胞的增殖和成熟。此外,DE结合的分层支架显着促进了软骨和软骨下骨的再生。该研究表明Si离子在促进软骨再生中的重要作用,并巩固了它们在增强骨修复中的基础作用。此外,它提供了一种经济和生态友好的战略,可以从低价值的海洋天然材料中开发高附加值的骨软骨再生生物支架。
    Osteochondral regeneration involves the highly challenging and complex reconstruction of cartilage and subchondral bone. Silicon (Si) ions play a crucial role in bone development. Current research on Si ions mainly focuses on bone repair, by using silicate bioceramics with complex ion compositions. However, it is unclear whether the Si ions have important effect on cartilage regeneration. Developing a scaffold that solely releases Si ions to simultaneously promote subchondral bone repair and stimulate cartilage regeneration is critically important. Diatomite (DE) is a natural diatomaceous sediment that can stably release Si ions, known for its abundant availability, low cost, and environmental friendliness. Herein, a hierarchical osteochondral repair scaffold is uniquely designed by incorporating gradient DE into GelMA hydrogel. The adding DE microparticles provides a specific Si source for controlled Si ions release, which not only promotes osteogenic differentiation of rBMSCs (rabbit bone marrow mesenchymal stem cells) but also enhances proliferation and maturation of chondrocytes. Moreover, DE-incorporated hierarchical scaffolds significantly promoted the regeneration of cartilage and subchondral bone. The study suggests the significant role of Si ions in promoting cartilage regeneration and solidifies their foundational role in enhancing bone repair. Furthermore, it offers an economic and eco-friendly strategy for developing high value-added osteochondral regenerative bioscaffolds from low-value ocean natural materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    关节软骨缺损是一个全球性的挑战,造成严重残疾。修复大型缺陷是有问题的,经常超过软骨的自愈能力和破坏骨结构。为了解决这个问题,我们开发了一种支架介导的治疗性离子递送系统。这些支架由聚(ε-己内酯)和锶(Sr)掺杂的生物活性纳米玻璃(SrBGn)构成,创建一个独特的分层结构,具有3D打印的大孔,微孔,和纳米拓扑由于SrBGn集成。SrBGn嵌入支架(SrBGn-μCh)释放Sr,硅(Si),和钙(Ca)离子,改善软骨细胞活化,附着力,扩散,和成熟相关的基因表达。这种多离子递送显著影响软骨细胞的代谢活性和成熟。重要的是,Sr离子可能通过Notch信号通路参与软骨细胞的调节。值得注意的是,脚手架的结构和拓扑线索加速了招募,附着力,传播,软骨细胞和骨髓间充质干细胞的增殖。Si和Ca离子加速成骨分化和血管形成,而Sr离子增强M2巨噬细胞的极化。我们的发现表明,SrBGn-μCh支架通过传递多种离子并提供结构/拓扑线索来加速骨软骨缺损的修复,最终支持宿主细胞功能和缺损愈合。这种支架对于骨软骨修复应用具有很大的前景。本文受版权保护。保留所有权利。
    Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage\'s self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold\'s structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于难以模拟天然骨软骨组织中的空间复杂性,因此关节软骨和软骨下骨的综合再生仍未满足临床需求。人工植入物。逐层制造策略,比如3D打印,已成为一种有前途的技术,可以复制分层的带状结构以及不同的微观结构和机械性能。然而,动态和循环的生理环境,如大规模运输或细胞迁移,通常会扭曲分层植入物中的预约束生物学特性,导致不区分的空间变化和随后低效的再生。这项研究在支架中引入了仿生钙化界面层,作为软骨层和软骨下骨层之间的致密屏障,以促进成骨软骨修复。由致密聚己内酯(PCL)组成的钙化界面层,纳米羟基磷灰石,和tasquinimod(TA)可以物理和生物学分离软骨层(TA混合,软骨细胞负载明胶甲基丙烯酸酯)来自软骨下粘结层(多孔PCL)。此介绍保留了每一层中用于软骨和骨再生的设计独立的生物环境。成功地抑制血管侵入软骨层,并防止由于TA的血管断流而引起的透明质软骨钙化。通过肉眼检查验证了改进的软骨和软骨下骨的整合再生。微型计算机断层扫描(micro-CT),以及基于体内大鼠模型的组织学和免疫组织化学分析。此外,基因和蛋白质表达研究确定了Caveolin(CAV-1)在通过Wnt/β-catenin途径促进血管生成中的关键作用,并表明钙化层中的TA通过抑制CAV-1来阻断血管生成。
    The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨关节炎是一种使人衰弱的慢性关节疾病,影响全世界数百万人。由于姑息治疗和手术治疗不能完全再生关节内的透明软骨,骨软骨(OC)组织工程已被探索以治愈这些具有挑战性的缺陷。使用计算模拟和3D打印,我们的目标是建立一种策略来制造具有增强生物力学的OC支架。首先,计算模拟显示,双层内的界面原纤维通过将负载引起的应力重定向到软骨层的顶部来改变OC支架的变形模式。主成分分析(PCA)显示,具有800µm长纤维的支架(支架8A-8H)具有最佳的生物力学特性,可以承受压缩力和剪切力。虽然压缩测试表明,具有800µm原纤维的OC支架没有比其他支架更大的压缩模量,界面剪切测试表明,支架8H具有最大的剪切强度。最后,失效分析表明,屈服或屈曲模型描述了界面原纤维的失效,取决于原纤维的细长度,S.特别是对于堆积密度n=6和n=8的脚手架,屈服破坏模型适合S<10的实验载荷,而屈曲模型适合S>10长细比的脚手架。这里提出的研究为设计具有精细生物力学的3D打印界面支架提供了重要见解,以改善OC组织工程成果。
    Osteoarthritis is a debilitating chronic joint disorder that affects millions of people worldwide. Since palliative and surgical treatments cannot completely regenerate hyaline cartilage within the articulating joint, osteochondral (OC) tissue engineering has been explored to heal OC defects. Utilizing computational simulations and three-dimensional (3D) printing, we aimed to build rationale around fabricating OC scaffolds with enhanced biomechanics. First, computational simulations revealed that interfacial fibrils within a bilayer alter OC scaffold deformation patterns by redirecting load-induced stresses toward the top of the cartilage layer. Principal component analysis revealed that scaffolds with 800 μm long fibrils (scaffolds 8A-8H) possessed optimal biomechanical properties to withstand compression and shear forces. While compression testing indicated that OC scaffolds with 800 μm fibrils did not have greater compressive moduli than other scaffolds, interfacial shear tests indicated that scaffold 8H possessed the greatest shear strength. Lastly, failure analysis demonstrated that yielding or buckling models describe interfacial fibril failure depending on fibril slenderness S. Specifically for scaffolds with packing density n = 6 and n = 8, the yielding failure model fits experimental loads with S < 10, while the buckling model fitted scaffolds with S < 10 slenderness. The research presented provides critical insights into designing 3D printed interfacial scaffolds with refined biomechanics toward improving OC tissue engineering outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    静脉内施用来自人脱落的乳牙干细胞(SHED-CM)的条件培养基可在小鼠颞下颌关节骨关节炎(TMJOA)中再生机械损伤的骨软骨组织。然而,潜在的治疗机制仍不清楚.这里,我们发现SHED-CM通过诱导滑膜中的抗炎M2巨噬细胞减轻了TMJ的损伤。甘露糖基化的Clodrosome对M2的消耗消除了SHED-CM的骨软骨修复活性。施用由SHED-CM诱导的M2(M2-CM)通过抑制软骨细胞炎症和基质降解,同时增强软骨细胞增殖和基质形成,有效改善小鼠TMJOA。值得注意的是,在体外,M2-CM直接抑制分解代谢活性,同时增强白细胞介素-1β刺激的小鼠原代软骨细胞的合成代谢活性。M2-CM还抑制RAW264.7细胞中核因子NF-κB受体激活剂配体诱导的破骨细胞生成。对M2-CM和M0-CM的分泌组分析显示,M2-CM中富含与抗炎和/或骨软骨形成相关的5种蛋白质。在这些蛋白质中,Wnt信号拮抗剂,分泌型卷曲相关蛋白1(sFRP1),是最丰富的,在向合成软骨细胞的转变中起着至关重要的作用,表明M2部分通过sFRP1改善TMJOA。这项研究表明,通过诱导表达sFRP1的组织修复M2巨噬细胞,SHED的分泌体在TMJOA中发挥了显着的骨软骨再生活性。
    Intravenous administration of conditioned medium from stem cells of human exfoliated deciduous teeth (SHED-CM) regenerates mechanically injured osteochondral tissues in mouse temporomandibular joint osteoarthritis (TMJOA). However, the underlying therapeutic mechanisms remain unclear. Here, we showed that SHED-CM alleviated injured TMJ by inducing anti-inflammatory M2 macrophages in the synovium. Depletion of M2 by Mannosylated Clodrosome abolished the osteochondral repair activities of SHED-CM. Administration of CM from M2-induced by SHED-CM (M2-CM) effectively ameliorated mouse TMJOA by inhibiting chondrocyte inflammation and matrix degradation while enhancing chondrocyte proliferation and matrix formation. Notably, in vitro, M2-CM directly suppressed the catabolic activities while enhancing the anabolic activities of interleukin-1β-stimulated mouse primary chondrocytes. M2-CM also inhibited receptor activator of nuclear factor NF-κB ligand-induced osteoclastogenesis in RAW264.7 cells. Secretome analysis of M2-CM and M0-CM revealed that 5 proteins related to anti-inflammation and/or osteochondrogenesis were enriched in M2-CM. Of these proteins, the Wnt signal antagonist, secreted frizzled-related protein 1 (sFRP1), was the most abundant and played an essential role in the shift to anabolic chondrocytes, suggesting that M2 ameliorated TMJOA partly through sFRP1. This study suggests that secretome from SHED exerted remarkable osteochondral regeneration activities in TMJOA through the induction of sFRP1-expressing tissue-repair M2 macrophages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号