organic electronics

有机电子学
  • 文章类型: Journal Article
    本研究探讨了硫氧化对结构的影响,光学,[1]苯并噻吩并[3,2-b][1]苯并噻吩(BTBT)衍生物的电子性质,特别关注2,7-二溴BTBT(2,7-二Br-BTBT)及其氧化形式,5,5-二氧化物(2,7-diBr-BTBTTDO)和5,5,10,10-四氧化物(2,7-diBr-BTBTTO)。BTBT的溴化,然后用间氯过氧苯甲酸顺序氧化,以良好的收率获得了目标化合物。他们的特点是使用广泛的分析技术,包括不同的光谱方法,X射线分析,热分析,和量子化学计算。结果表明,硫氧化显著改变了晶体堆积,热稳定性,BTBT衍生物的光电性能。值得注意的是,氧化形式表现出增加的热稳定性和增强的发射性质,量子产率超过99%。这些发现为设计具有可调性能的先进有机半导体和荧光材料提供了有价值的见解,基于BTBT核心。
    This study explores the impact of sulfur oxidation on the structural, optical, and electronic properties of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives, specifically focusing on 2,7-dibromo BTBT (2,7-diBr-BTBT) and its oxidized forms, 5,5-dioxide (2,7-diBr-BTBTDO) and 5,5,10,10-tetraoxide (2,7-diBr-BTBTTO). The bromination of BTBT followed by sequential oxidation with m-chloroperoxybenzoic acid yielded the target compounds in good yields. They were characterized using a wide array of analytical techniques including different spectroscopic methods, X-ray analysis, thermal analysis, and quantum chemical calculations. The results revealed that sulfur oxidation significantly alters the crystal packing, thermal stability, and optoelectronic properties of BTBT derivatives. Notably, the oxidized forms exhibited increased thermal stability and enhanced emission properties, with quantum yields exceeding 99%. These findings provide valuable insights for designing advanced organic semiconductors and fluorescent materials with tunable properties, based on the BTBT core.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小分子/聚合物半导体共混物是开发高性能有机电子器件的有前途的解决方案。它们能够结合溶液可加工性的简易性,由于聚合物油墨的流变特性可调,由于小分子的高结晶相,具有出色的电荷传输性能。然而,因为电荷注入的问题,到目前为止,只有在ad-hoc设备架构中才能证明如此好的性能,不适合高频应用,其中晶体管尺寸需要缩小。这里,迄今为止报道的性能最好的混合物的成功整合,基于2,7-二辛基[1]苯并噻吩并[3,2-b][1]苯并噻吩(C8-BTBT)和聚(茚并二噻吩-co-苯并噻二唑)(C16IDT-BT),在以沟道和重叠长度等于1.3和1.9μm为特征的OFET中,分别,被证明,在-8V下实现23MHz的过渡频率。两个关键方面允许这样的结果:分子掺杂,导致宽度归一化接触电阻仅为260Ωcm,允许在短沟道器件中保持高达3cm2/(Vs)的表观场效应迁移率,以及高电容电介质堆叠的实现,使工作电压降低低于10V和克服自热问题。这些结果代表了未来开发用于物联网应用的低成本和高速印刷电子产品的基本步骤。
    Small molecule/polymer semiconductor blends are promising solutions for the development of high-performing organic electronics. They are able to combine ease in solution processability, thanks to the tunable rheological properties of polymeric inks, with outstanding charge transport properties thanks to high crystalline phases of small molecules. However, because of charge injection issues, so far such good performances are only demonstrated in ad-hoc device architectures, not suited for high-frequency applications, where transistor dimensions require downscaling. Here, the successful integration of the most performing blend reported to date, based on 2,7-dioctyl[1] benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and poly(indacenodithiophene-co-benzothiadiazole) (C16IDT-BT), in OFETs characterized by channel and overlap lengths equal to 1.3 and 1.9 µm, respectively, is demonstrated, enabling a transition frequency of 23 MHz at -8 V. Two key aspects allowed such result: molecular doping, leading to width-normalized contact resistance of only 260 Ωcm, allowing to retain an apparent field-effect mobility as high as 3 cm2/(Vs) in short channel devices, and the implementation of a high capacitance dielectric stack, enabling the reduction of operating voltages below 10 V and the overcoming of self-heating issues. These results represent a fundamental step for the future development of low-cost and high-speed printed electronics for IoT applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    三重态-三重态湮没上转换(TTA-UC)是一种光物理过程,其中两个低能光子转换为一个高能光子。这种类型的上转换需要两种物质:一种吸收低能光并将其能量转移到歼灭器的敏化剂,在TTA之后发出更高能量的光。尽管TTA-UC的大量应用,很少有歼灭者的家庭被探索过。在这项工作中,我们显示二吡咯并萘啶二酮(DPND)可以在TTA-UC中充当an灭因子。我们发现DPND的结构变化显着增加了其上转换量子产率(UCQY)。我们优化的DPND消灭器显示出高达9.4%的最高内部UCQY,优于UCQY常用的近红外至可见光湮灭橡胶几乎两倍。
    Triplet-triplet annihilation upconversion (TTA-UC) is a photophysical process in which two low-energy photons are converted into one higher-energy photon. This type of upconversion requires two species: a sensitizer that absorbs low-energy light and transfers its energy to an annihilator, which emits higher-energy light after TTA. In spite of the multitude of applications of TTA-UC, few families of annihilators have been explored. In this work, we show dipyrrolonaphthyridinediones (DPNDs) can act as annihilators in TTA-UC. We found that structural changes to DPND dramatically increase its upconversion quantum yield (UCQY). Our optimized DPND annihilator demonstrates a high maximum internal UCQY of 9.4%, outperforming the UCQY of commonly used near-infrared-to-visible annihilator rubrene by almost double.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的二十年里,低共熔溶剂(DESs)作为一类新兴的溶剂,在不同的化学领域具有独特的性能和应用。DES系统应用的一个领域是聚合物凝胶的设计,通常被称为“共晶”,\“可以使用DES代替传统溶剂来制备,或单体构成DES本身的一部分。由于广泛的分子内相互作用网络(例如,氢键)和DES系统中存在的离子物种,聚合物共析台通常具有吸引人的材料特性-高粘合强度,可调粘度,快速聚合动力学,良好的导电性,以及高强度和灵活性。此外,由于存在于这些材料中的固有相互作用,非共价交联方法是可能的。这篇综述考虑了聚合物共晶的几个关键应用,包括有机电子产品,可穿戴传感器技术,3D打印树脂,粘合剂,以及各种生物医学应用。设计,合成,并讨论了这些共晶的性质,除了这种合成方法与传统凝胶设计相比的优点。还强调了对该领域未来方向的看法。
    Over the past two decades, deep eutectic solvents (DESs) have captured significant attention as an emergent class of solvents that have unique properties and applications in differing fields of chemistry. One area where DES systems find utility is the design of polymeric gels, often referred to as \"eutectogels,\" which can be prepared either using a DES to replace a traditional solvent, or where monomers form part of the DES themselves. Due to the extensive network of intramolecular interactions (e.g., hydrogen bonding) and ionic species that exist in DES systems, polymeric eutectogels often possess appealing material properties-high adhesive strength, tuneable viscosity, rapid polymerization kinetics, good conductivity, as well as high strength and flexibility. In addition, non-covalent crosslinking approaches are possible due to the inherent interactions that exist in these materials. This review considers several key applications of polymeric eutectogels, including organic electronics, wearable sensor technologies, 3D printing resins, adhesives, and a range of various biomedical applications. The design, synthesis, and properties of these eutectogels are discussed, in addition to the advantages of this synthetic approach in comparison to traditional gel design. Perspectives on the future directions of this field are also highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,我们提出了一种区域功能化分子设计策略,该策略可以通过分子的不同片段独立控制不同的关键参数。三个新颖的蓝色发射器A-BN,DA-BN,A-DBN,已通过将高度刚性和三维的含金刚烷的螺芴单元集成到MR框架中而成功合成。这些分子形成两个独特的功能部分:第1部分包含硼-氮(BN)-MR框架,相邻的苯和芴单元形成中心发光核,其特征在于异常刚性的平面几何形状,允许窄的FWHM值;第2部分包括外围均三甲苯,苯,和金刚烷基,创造独特的三维“伞状”构象,以减轻分子间相互作用并抑制激子湮没。由此产生的A-BN,DA-BN,A-DBN表现出非常窄的FWHM值,范围为18至14nm,光致发光量子产率接近统一。特别是,基于DA-BN和A-DBN的OLED显示出35.0%和34.3%的出色效率,FWHM值低至22nm和25nm,分别,有效地实现了高色纯度和高器件性能的集成。
    Herein, we propose a regional functionalization molecular design strategy that enables independent control of distinct pivotal parameters through different molecule segments. Three novel multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters A-BN, DA-BN, and A-DBN, have been successfully synthesized by integrating highly rigid and three-dimensional adamantane-containing spirofluorene units into the MR framework. These molecules form two distinctive functional parts: part 1 comprises a boron-nitrogen (BN)-MR framework with adjacent benzene and fluorene units forming a central luminescent core characterized by an exceptionally rigid planar geometry, allowing for narrow FWHM values; part 2 includes peripheral mesitylene, benzene, and adamantyl groups, creating a unique three-dimensional \"umbrella-like\" conformation to mitigate intermolecular interactions and suppress exciton annihilation. The resulting A-BN, DA-BN, and A-DBN exhibit remarkably narrow FWHM values ranging from 18 to 14 nm and near-unity photoluminescence quantum yields. Particularly, OLEDs based on DA-BN and A-DBN demonstrate outstanding efficiencies of 35.0 % and 34.3 %, with FWHM values as low as 22 nm and 25 nm, respectively, effectively accomplishing the integration of high color purity and high device performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过精确控制的离子传输来推进离子电子学对于桥接外部有机电子学与生物系统至关重要。这个长期的目标,然而,因此,受到(半)晶体膜中的活性离子电迁移和空闲扩散泄漏之间的权衡的限制。这里,我们通过共混共轭聚合物提出了一种混合取向策略,允许同时高离子电迁移效率和低泄漏。我们的研究表明,具有明显渗透途径的边缘聚集比面上聚集的离子渗透性高得多,但遇到明显的泄漏扩散。通过精心设计混合取向,聚合物复合材料表现出理想的可切换离子传输行为,实现非常高的电迁移效率,超过每分钟每毫升一万亿离子,并且可以忽略不计的空闲泄漏。这个概念证明,通过皮肤适形有机电子离子泵(OEIP)中的药物释放进行验证,为开发多功能离子电子设备提供了合理的方法。
    Advancing iontronics with precisely controlled ion transport is fundamentally important to bridge external organic electronics with the biosystem. This long-standing goal, however, is thus far limited by the trade-off between the active ion electromigration and idle diffusion leakage in the (semi)crystalline film. Here, we presented a mixed-orientation strategy by blending a conjugated polymer, allowing for simultaneously high ion electromigration efficiency and low leakage. Our studies revealed that edge-on aggregation with a significant percolative pathway exhibits much higher ion permeability than that of the face-on counterpart but encounters pronounced leakage diffusion. Through carefully engineering the mixed orientations, the polymer composite demonstrated an ideal switchable ion-transport behavior, achieving a remarkably high electromigration efficiency exceeding one quadrillion ions per milliliter per minute and negligible idle leakage. This proof of concept, validated by drug release in a skin-conformable organic electronic ion pump (OEIP), offers a rational approach for the development of multifunctional iontronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    n型有机导电分子在有机电子学中起着重要作用。自掺杂可以增加材料内的载流子浓度以改善导电性,而不需要额外的有意掺杂剂。这篇综述的重点是在自掺杂的n型分子的合成中采用的各种策略,并概述了掺杂机理。通过阐明这些机制,该综述旨在建立分子结构与电子性质之间的关系。此外,该评论概述了自掺杂n型分子在有机电子学领域的当前应用,突出它们在各种设备中的性能和潜力。它还提供了对自掺杂材料未来发展的见解。
    n-Type organic conductive molecules play a significant role in organic electronics. Self-doping can increase the carrier concentration within the materials to improve the conductivity without the need for additional intentional dopants. This review focuses on the various strategies employed in the synthesis of self-doped n-type molecules, and provides an overview of the doping mechanisms. By elucidating these mechanisms, the review aims to establish the relationship between molecular structure and electronic properties. Furthermore, the review outlines the current applications of self-doped n-type molecules in the field of organic electronics, highlighting their performance and potential in various devices. It also offers insights into the future development of self-doped materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米技术与光氧化还原医学的整合导致了生物相容性半导体聚合物纳米颗粒(SPN)的出现,用于细胞内活性氧(ROS)的光学调制。然而,对于能够在无毒光密度下以高空间分辨率精细控制细胞内氧化还原状态的有效光活性材料的需求仍然在很大程度上没有得到满足。在这里,开发了高度光电化学高效的光活性聚合物珠。光活性材料/电解质界面面积通过设计多孔半导体聚合物纳米颗粒(PSPN)而最大化。PSPN是通过选择性水解由聚(3-己基噻吩)-接枝-聚(乳酸)(P3HT-g-PLA)制成的纳米颗粒的聚酯链段来合成的。PSPN的光电流比无孔P3HT-g-PLA-SPN高4.5倍,和PSPNs有效地减少水环境中的氧气。PSPNs在内皮细胞内内化,并在光学上触发ROS产生,无孔P3HT-SPNs浓度增加>1.3倍,在低至每平方厘米几毫瓦的光密度下,与体内完全兼容,慢性应用。
    The integration of nanotechnology with photoredox medicine has led to the emergence of biocompatible semiconducting polymer nanoparticles (SPNs) for the optical modulation of intracellular reactive oxygen species (ROS). However, the need for efficient photoactive materials capable of finely controlling the intracellular redox status with high spatial resolution at a nontoxic light density is still largely unmet. Herein, highly photoelectrochemically efficient photoactive polymer beads are developed. The photoactive material/electrolyte interfacial area is maximized by designing porous semiconducting polymer nanoparticles (PSPNs). PSPNs are synthesized by selective hydrolysis of the polyester segments of nanoparticles made of poly(3-hexylthiophene)-graft-poly(lactic acid) (P3HT-g-PLA). The photocurrent of PSPNs is 4.5-fold higher than that of nonporous P3HT-g-PLA-SPNs, and PSPNs efficiently reduce oxygen in an aqueous environment. PSPNs are internalized within endothelial cells and optically trigger ROS generation with a >1.3-fold concentration increase with regard to nonporous P3HT-SPNs, at a light density as low as a few milliwatts per square centimeter, fully compatible with in vivo, chronic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纯芳烃材料(PHC)代表了新一代磷光OLED(PhOLED)的主体材料,没有杂原子。它们降低了分子的复杂性,可以很容易地合成,是一个重要的方向,以强大的设备。由于杂原子可以通过激子诱导的降解过程参与操作OLED中的键解离,开发新的PHCs似乎与这项技术的未来特别相关。在目前的工作中,我们报告了在三个螺二芴片段的组装上构建的一系列扩展的PHCs。所得的位置异构体呈现高的三重态能级,与以前报道的PHCs相比,HOMO/LUMO差异很大,热和形态特性得到了改善。这些特性对于用于PhOLEDs的下一代主体材料是有益的,并且提供相关的设计准则。用作发蓝光的PhOLEDs中的主体,这仍然是该领域最薄弱的环节,在低效率滚降的情况下,获得了24%的非常高的EQE和3.56V的低阈值电压。这种高性能加强了PHC策略作为OLED技术的有效替代方案的地位,并为更简单的电子开辟了道路。
    Pure aromatic hydrocarbon materials (PHCs) represent a new generation of host materials for phosphorescent OLEDs (PhOLEDs), free of heteroatoms. They reduce the molecular complexity, can be easily synthesized and are an important direction towards robust devices. As heteroatoms can be involved in bonds dissociations in operating OLEDs through exciton induced degradation processes, developing novel PHCs appear particularly relevant for the future of this technology. In the present work, we report a series of extended PHCs constructed by the assembly of three spirobifluorene fragments. The resulting positional isomers present a high triplet energy level, a wide HOMO/LUMO difference and improved thermal and morphological properties compared to previously reported PHCs. These characteristics are beneficial for the next generation of host materials for PhOLEDs and provide relevant design guidelines. When used as a host in blue-emitting PhOLEDs, which are still the weakest link of the field, a very high EQE of 24 % and low threshold voltage of 3.56 V were obtained with a low-efficiency roll-off. This high performance strengthens the position of PHC strategy as an efficient alternative for OLED technology and opens the way to a more simple electronic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米箍,π-共轭系统的循环缔合形成环状分子,在过去的15年里得到了广泛的发展。除了合成挑战,对这些分子的强烈兴趣源于它们径向取向的π轨道,为这些迷人的结构提供了独特的属性。由于它们特殊的圆柱形排列,这种新一代的弯曲分子已经在许多应用中使用,例如主客体络合,生物传感,生物成像,固态发射和催化。然而,它们在有机电子学方面的潜力才刚刚开始探索。从作为发射体首次纳入荧光有机发光二极管(OLED),到最近首次在磷光OLED中作为宿主或在有机场效应晶体管(OFET)和有机光伏(OPV)中作为电荷传输蛋白,近年来,这一领域取得了重大突破。这些发现表明,弯曲材料可以在未来发挥关键作用,甚至可以比线性材料更有效。这可能对电子产品的未来产生重要影响。现在是时候概述迄今为止在电子设备中使用的不同纳米环,以刺激基于这些大环的功能材料的未来分子设计。
    Nanohoops, cyclic association of π-conjugated systems to form a hoop-shaped molecule, have been widely developed in the last 15 years. Beyond the synthetic challenge, the strong interest towards these molecules arises from their radially oriented π-orbitals, which provide singular properties to these fascinating structures. Thanks to their particular cylindrical arrangement, this new generation of curved molecules have been already used in many applications such as host-guest complexation, biosensing, bioimaging, solid-state emission and catalysis. However, their potential in organic electronics has only started to be explored. From the first incorporation as an emitter in a fluorescent organic light emitting diode (OLED), to the recent first incorporation as a host in phosphorescent OLEDs or as charge transporter in organic field-effect transistors and in organic photovoltaics, this field has shown important breakthroughs in recent years. These findings have revealed that curved materials can play a key role in the future and can even be more efficient than their linear counterparts. This can have important repercussions for the future of electronics. Time has now come to overview the different nanohoops used to date in electronic devices in order to stimulate the future molecular designs of functional materials based on these macrocycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号