nutrient starvation

营养饥饿
  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    营养饥饿时,沙眼衣原体血清变型L2(CTL)从其正常生长转变为非复制形式,称为持久性。尚不清楚持久性是否反映了适应性反应或缺乏适应性反应。为了理解这一点,收集了在营养充足和营养匮乏的条件下生长的CTL的转录组学数据。在转录组学数据上应用K均值聚类揭示了在没有任何规范的全局应激调节剂的情况下,在应激条件下CTL的全局转录组学重新布线。这与以前的数据一致,表明CTL的应激反应是由于缺乏适应性反应机制。为了研究这对CTL代谢的影响,我们重建了CTL的基因组尺度代谢模型(iCTL278),并用收集的转录组学数据对其进行了语境化.使用情境化iCTL278的代谢瓶颈分析,我们观察到磷酸甘油酸变位酶(pgm)调节CTL进入持续状态。我们的数据表明pgm具有最高的热力学驱动力和最低的酶成本。此外,在存在或不存在色氨酸的情况下,CRISPRi驱动的pgm敲低揭示了该基因在调节持久性中的重要性。因此,这项工作,第一次,引入热力学和酶成本作为工具,以获得对CTL持久性的更深入的了解。
    目的:本研究使用代谢模型来研究在色氨酸和铁饥饿条件下导致沙眼衣原体血清变型L2(CTL)持续存在的因素。由于CTL缺乏许多规范的转录调节因子,该模型用于评估关于持久性的两个普遍假设-衣原体对营养饥饿的反应代表由于缺乏调节剂而引起的被动反应,或者是细菌的主动反应。应激诱导的转录组学数据的K-means聚类揭示了支持缺乏适应性的惊人证据(即,被动)反应。为了找到它的代谢特征,代谢建模针尖PGM作为持久性的潜在调节剂。热力学驱动力,酶成本,pgm的CRISPRi击倒支持了这一发现。总的来说,这项工作介绍了热力学驱动力和酶成本,作为理解衣原体持久性的工具,展示了系统生物学指导的CRISPRi如何解开复杂的细菌现象。
    Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions. Applying K-means clustering on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions in the absence of any canonical global stress regulator. This is consistent with previous data that suggested that CTL\'s stress response is due to a lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state. Our data indicate that pgm has the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm in the presence or absence of tryptophan revealed the importance of this gene in modulating persistence. Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools to gain a deeper understanding on CTL persistence.
    OBJECTIVE: This study uses a metabolic model to investigate factors that contribute to the persistence of Chlamydia trachomatis serovar L2 (CTL) under tryptophan and iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the model was used to assess two prevailing hypotheses on persistence-that the chlamydial response to nutrient starvation represents a passive response due to the lack of regulators or that it is an active response by the bacterium. K-means clustering of stress-induced transcriptomics data revealed striking evidence in favor of the lack of adaptive (i.e., a passive) response. To find the metabolic signature of this, metabolic modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding. Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi can unravel complex bacterial phenomena.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    巨自噬/自噬是细胞用来应对有害条件的策略,例如营养缺乏。吞噬细胞,自噬体的前体,在内质网(ER)上启动和扩展。然而,吞噬细胞和完整的自噬体是如何与内质网连接的,目前尚不完全清楚.我们最近公布了两个结构之间的基于RABGTPase的连接。RABC1是RABC/RAB18GTPases的植物成员。我们的生化和显微镜数据表明,RABC1促进自噬响应营养饥饿,但不是在ER压力下。在营养饥饿的条件下,活性RABC1与ER上的ATG18a相互作用,控制ATG18a与ER的关联。随后,活性RABC1被关闭,允许扩大的吞噬团或自噬体从ER分离。我们的工作确定了植物细胞中RABGTP酶介导的自噬过程,为在不断变化的环境中提高作物生产力打开一扇门。
    Macroautophagy/autophagy is a strategy cells use to cope with detrimental conditions, e.g. nutrient deficiency. Phagophores, the precursors to autophagosomes, are initiated and expanded on the endoplasmic reticulum (ER). However, how phagophores and completed autophagosomes are linked to the ER remains incompletely understood. We recently unveiled a RAB GTPase-based linkage between the two structures. RABC1 is a plant member of RABC/RAB18 GTPases. Our biochemical and microscopy data indicated that RABC1 promotes autophagy in response to nutrient starvation, but not under ER stress. Under nutrient-starvation conditions, active RABC1 interacts with ATG18a on the ER, controlling the association of ATG18a to the ER. Subsequently, active RABC1 is turned off allowing expanded phagophores or autophagosomes to detach from the ER. Our work identifies a RAB GTPase-mediated autophagy process in plant cells, opening a door for improving crop productivity in the changing environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    营养素在大多数植物的生长发育中起着重要作用。然而,在多年生的树上,营养素在不同基因型中的功能知之甚少。三种不同的营养水平(低,足够,和高营养水平)应用于两个对比的尾叶桉树品种(高生长品种ZQUA44和低生长品种ZQUB15),并分析生长和表达水平。尽管两种基因型在营养饥饿处理下的生长性状远低于在营养丰富的情况下,树高,表冠宽度,在所有三个营养水平下,不同ZQUA44组织的生物量均远高于ZQUB15。差异表达基因(DEGs)根据其表达模式分为六个亚簇,和功能注释表明,参与谷胱甘肽代谢和类黄酮生物合成的DEGs可能是不同基因型之间营养饥饿的原因,而参与类胡萝卜素生物合成以及淀粉和蔗糖代谢的DEGs可能在不同基因型中具有一系列功能。编码MYB相关家族的DEGs可能是所有基因型营养缺乏的原因,而B3在不同的基因型中可能具有不同的功能。我们的结果表明,当面对非生物胁迫时,不同的基因型可能会形成不同的途径来协调植物的生存。
    Nutrients play important roles in the growth and development of most plant species. However, in perennial trees, the function of nutrients in different genotypes is poorly understood. Three different nutrient levels (low, sufficient, and high nutrient levels) were applied to two contrasting Eucalyptus urophylla cultivars (a high-growth cultivar ZQUA44 and a low-growth cultivar ZQUB15), and growth and expression levels were analyzed. Although the growth traits of both genotypes under nutrient starvation treatment were much lower than under abundant nutrients, tree height, crown width, and biomass of different ZQUA44 tissues were much higher than those of ZQUB15 at all three nutrient levels. Differentially expressed genes (DEGs) clustered into six subclusters based on their expression patterns, and functional annotation showed that the DEGs involved in glutathione metabolism and flavonoid biosynthesis may be responsible for nutrient starvation across different genotypes, while the DEGs involved in carotenoid biosynthesis and starch and sucrose metabolism may have a range of functions in different genotypes. The DEGs encoding the MYB-related family may be responsible for nutrient deficiency in all genotypes, while B3 may have different functions in different genotypes. Our results demonstrate that different genotypes may form different pathways to coordinate plant survival when they face abiotic stresses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    乙烯是一种必需的植物激素,在各种生理过程中至关重要。这些过程包括种子发芽,叶片衰老,果实成熟,以及植物对环境压力的反应。乙烯的生物合成受到两种关键酶的严格调控,即1-氨基环丙烷-1-羧酸合酶(ACS)和1-氨基环丙烷-1-羧酸氧化酶(ACO)。最初,流行的假设表明,ACS是乙烯生物合成途径的限制因素。然而,从各种研究中积累的证据表明,ACO,在特定情况下,在乙烯生产中充当限速酶。在正常的发育过程中,ACS和ACO合作保持乙烯生产平衡,确保适当的植物生长和生理。然而,在非生物胁迫条件下,比如干旱,盐度,极端温度,或者病原体攻击,乙烯生物合成的调节对植物的生存至关重要。这篇综述强调了结构特征,并检查了转录,转录后,ACS和ACO的翻译后调控及其在非生物胁迫条件下的作用。关于乙烯信号在非生物胁迫适应中的作用的评论是可用的。然而,目前还没有综述ACS和ACO在非生物胁迫适应中的作用.探索特定的ACS和ACO同工型如何有助于特定植物对各种非生物胁迫的反应,并了解它们是如何被调节的,可以指导重点策略的发展。这些策略旨在提高植物更有效地应对环境挑战的能力。
    Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant\'s response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants\' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant\'s response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant\'s ability to cope with environmental challenges more effectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    营养饥饿时,沙眼衣原体血清变型L2(CTL)从其正常生长转变为非复制形式,称为持久性。目前尚不清楚持久性是适应性反应还是缺乏适应性反应。为了理解转录组学数据是针对营养充足和营养饥饿的CTL收集的。在转录组学数据上应用机器学习方法揭示了在压力条件下CTL的全局转录组重新布线,而没有任何全局压力调节剂。这表明CTL的应激反应是由于缺乏适应性反应机制。为了研究这对CTL代谢的影响,我们重建了CTL的基因组尺度代谢模型(iCTL278),并用收集的转录组学数据对其进行了语境化.使用上下文iCTL278的代谢瓶颈分析,我们观察到磷酸甘油酸变位酶(pgm)调节CTL进入持久性。稍后,发现pgm具有最高的热力学驱动力和最低的酶成本。此外,CRISPRi驱动的pgm敲低和色氨酸饥饿实验揭示了该基因在诱导持久性中的重要性。因此,这项工作,第一次,引入热力学和酶成本作为工具,以更深入地了解CTL持久性。
    Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence is an adaptive response or lack of it. To understand that transcriptomics data were collected for nutrient-sufficient and nutrient-starved CTL. Applying machine learning approaches on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions without having any global stress regulator. This indicated that CTL\'s stress response is due to lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence. Later, pgm was found to have the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm and tryptophan starvation experiments revealed the importance of this gene in inducing persistence. Hence, this work, for the first time, introduced thermodynamics and enzyme-cost as tools to gain deeper understanding on CTL persistence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂滴(LD)是参与脂肪酸运输和代谢管理的动态细胞器。最近的研究表明,自噬和LDs在抵抗营养应激方面具有互补作用。但癌细胞中的自噬-LD相互作用尚不清楚。这里,我们研究了饥饿的HeLa宫颈癌和MDA-MB-231乳腺癌细胞中自噬与LDs之间的关系。我们发现急性氨基酸消耗诱导自噬并促进二酰甘油酰基转移酶1(DGAT1)介导的LD在HeLa细胞中的积累。通过晚期自噬抑制剂抑制自噬,或通过击倒自噬相关5(ATG5),减少了氨基酸饥饿的癌细胞中的LD积累,表明自噬有助于LD生物发生。相反,击倒脂肪甘油三酯脂肪酶(ATGL)增加LD积累,表明在这些条件下,LD分解是由脂解介导的。通过沉默ATG5和使用DGAT抑制剂对LD生物发生的同时抑制自噬可有效杀死饥饿的HeLa细胞,而细胞存活不受ATGL介导的脂解作用的抑制。在缺乏氨基酸的侵袭性三阴性MDA-MB-231乳腺癌细胞中也观察到自噬依赖性LD生物发生。但是这些细胞对LD生物发生和自噬的联合抑制并不敏感。这些发现表明,虽然靶向自噬驱动和DGAT介导的LD生物发生降低了HeLa宫颈癌细胞对氨基酸剥夺的抵抗力,这种策略在其他类型的癌细胞中可能不成功.
    Lipid droplets (LDs) are dynamic organelles involved in the management of fatty acid trafficking and metabolism. Recent studies suggest that autophagy and LDs serve complementary roles in the protection against nutrient stress, but the autophagy-LD interplay in cancer cells is not well understood. Here, we examined the relationship between autophagy and LDs in starving HeLa cervical cancer- and MDA-MB-231 breast cancer cells. We found that acute amino acid depletion induces autophagy and promotes diacylglycerol acyltransferase 1 (DGAT1)-mediated LD accumulation in HeLa cells. Inhibition of autophagy via late-stage autophagy inhibitors, or by knocking down autophagy-related 5 (ATG5), reduced LD accumulation in amino acid-starved cancer cells, suggesting that autophagy contributes to LD biogenesis. On the contrary, knockdown of adipose triglyceride lipase (ATGL) increased LD accumulation, suggesting that LD breakdown is mediated by lipolysis under these conditions. Concurrent inhibition of autophagy by silencing ATG5 and of LD biogenesis using DGAT inhibitors was effective in killing starving HeLa cells, whereas cell survival was not compromised by suppression of ATGL-mediated lipolysis. Autophagy-dependent LD biogenesis was also observed in the aggressive triple-negative MDA-MB-231 breast cancer cells deprived of amino acids, but these cells were not sensitized to starvation by the combined inhibition of LD biogenesis and autophagy. These findings reveal that while targeting autophagy-driven and DGAT-mediated LD biogenesis reduces the resilience of HeLa cervical cancer cells to amino acid deprivation, this strategy may not be successful in other cancer cell types.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们进行了一项实地研究,以调查在淡水湖(犹他州湖)盛开的各个阶段营养缺乏期间,严格响应在蓝细菌和共存的浮游细菌中的作用。使用宏基因组学和超转录组学分析,我们检查了蓝藻生态学和与严格响应相关的重要功能基因的表达,N和P代谢,和监管。我们的发现标志着在理解有毒蓝细菌在氮(N)和磷(P)限制下生存和增殖的机制方面取得了重大进展。我们成功地鉴定并分析了显性水华形成蓝细菌的宏基因组组装基因组(MAG),即,圆形Dolichospermum,Aphanizomenonflos-aquaeUKL13-PB,Planktothrixagardhii,和铜绿微囊藻。通过将RNA-seq数据映射到MAG的编码序列,我们观察到,这四种流行的蓝藻物种激活多种功能,以适应无机营养素的消耗。在开花期间和之后,四种优势蓝藻物种表达了与毒素产生相关的高水平转录本,如微囊藻毒素(mcy),Anatoxins(ana),和cylindrospermopsin(cyr)。此外,与多磷酸盐(poly-P)储存和严格响应alarmone(p)ppGpp合成/水解相关的基因,包括ppk,rela,和spot,在蓝细菌和浮游细菌中均高度激活。在N缺乏下,在某些蓝细菌中,主要的N途径从浮游细菌中的反硝化和异化硝酸盐还原转变为N2固定和同化硝酸盐还原,群落组成也相应变化。P剥夺触发了蓝细菌和浮游细菌中spoT依赖性(p)ppGpp积累和Pho调节子激活介导的严格反应,促进无机和有机磷的吸收。显性蓝细菌MAG表现出多种碱性磷酸酶(APase)转录本的存在(例如,在Dolichospermum中的phoA,phoX在浮游生物中,和微囊藻),表明它们具有合成和释放APase酶以将环境有机P转化为生物可利用形式的能力。相反,与浮游细菌为主的途径如反硝化相关的转录本很低,并且与强烈的氰化HAB的发生不一致。在N之间观察到的强相关性,P,严格的响应代谢和由优势蓝细菌物种引起的水华演替提供了证据,由营养限制引起,可能激活产生毒素的蓝细菌中独特的N和P功能,从而维持cyanoHABs。
    We conducted a field study to investigate the role of stringent response in cyanobacteria and coexisting bacterioplankton during nutrient-deprived periods at various stages of bloom in a freshwater lake (Utah Lake) for the first time. Using metagenomics and metatranscriptomics analyses, we examined the cyanobacterial ecology and expression of important functional genes related to stringent response, N and P metabolism, and regulation. Our findings mark a significant advancement in understanding the mechanisms by which toxic cyanobacteria survive and proliferate during nitrogen (N) and phosphorus (P) limitations. We successfully identified and analyzed the metagenome-assembled genomes (MAGs) of the dominant bloom-forming cyanobacteria, namely, Dolichospermum circinale, Aphanizomenon flos-aquae UKL13-PB, Planktothrix agardhii, and Microcystis aeruginosa. By mapping RNA-seq data to the coding sequences of the MAGs, we observed that these four prevalent cyanobacteria species activated multiple functions to adapt to the depletion of inorganic nutrients. During and after the blooms, the four dominant cyanobacteria species expressed high levels of transcripts related to toxin production, such as microcystins (mcy), anatoxins (ana), and cylindrospermopsins (cyr). Additionally, genes associated with polyphosphate (poly-P) storage and the stringent response alarmone (p)ppGpp synthesis/hydrolysis, including ppk, relA, and spoT, were highly activated in both cyanobacteria and bacterioplankton. Under N deficiency, the main N pathways shifted from denitrification and dissimilatory nitrate reduction in bacterioplankton toward N2-fixing and assimilatory nitrate reduction in certain cyanobacteria with a corresponding shift in the community composition. P deprivation triggered a stringent response mediated by spoT-dependent (p)ppGpp accumulation and activation of the Pho regulon in both cyanobacteria and bacterioplankton, facilitating inorganic and organic P uptake. The dominant cyanobacterial MAGs exhibited the presence of multiple alkaline phosphatase (APase) transcripts (e.g., phoA in Dolichospermum, phoX in Planktothrix, and Microcystis), suggesting their ability to synthesize and release APase enzymes to convert ambient organic P into bioavailable forms. Conversely, transcripts associated with bacterioplankton-dominated pathways like denitrification were low and did not align with the occurrence of intense cyanoHABs. The strong correlations observed among N, P, stringent response metabolisms and the succession of blooms caused by dominant cyanobacterial species provide evidence that the stringent response, induced by nutrient limitation, may activate unique N and P functions in toxin-producing cyanobacteria, thereby sustaining cyanoHABs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鞭毛藻是已知形成有害藻类水华(HAB)的重要初级生产者。在水中,营养可用性,pH值,盐度和人为污染构成了他们的化学应激源。OMICs方法的出现推动了我们对鞭毛藻对压力源的反应的理解。然而,在鞭毛虫中,这些方法仍然有偏见,与蛋白质组学和代谢组学方法相比,转录组学方法在很大程度上是进行的。此外,集成的OMIC方法刚刚出现。这里,我们报告了不同的OMIC方法在研究鞭毛藻对化学应激源的反应方面的最新贡献,并讨论了尽管鞭毛藻缺乏可用的基因组资源,但我们需要面对的挑战,以进一步推动研究。
    Dinoflagellates are important primary producers known to form Harmful Algae Blooms (HABs). In water, nutrient availability, pH, salinity and anthropogenic contamination constitute chemical stressors for them. The emergence of OMICs approaches propelled our understanding of dinoflagellates\' responses to stressors. However, in dinoflagellates, these approaches are still biased, as transcriptomic approaches are largely conducted compared to proteomic and metabolomic approaches. Furthermore, integrated OMICs approaches are just emerging. Here, we report recent contributions of the different OMICs approaches to the investigation of dinoflagellates\' responses to chemical stressors and discuss the current challenges we need to face to push studies further despite the lack of genomic resources available for dinoflagellates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多重耐药真菌病原体的出现是全球公共卫生的重要问题。耳念珠菌作为一种多重耐药真菌病原体构成了相当大的威胁。我们最近的研究表明,腺苷酰环化酶Cyr1和蛋白激酶A(PKA)通路在C.auris的耐药性和致病性中起着独特而多余的作用。然而,C.auris的上游和负反馈调节机制尚未完全了解。在这项研究中,我们发现小的GTPaseRas1及其核苷酸交换因子Cdc25和GTPase激活蛋白Ira2在调节cAMP/PKA依赖性性状中起主要作用,而G蛋白偶联受体Gpr1和异源三聚体G蛋白α亚基Gpa2起次要作用。Pde2在cAMP/PKA通路的负反馈调节中起主要作用,而Pde1扮演次要角色。通过删除PDE2或BCY1使Ras/cAMP/PKA通路过度激活,使耳念珠菌细胞对营养缺乏敏感,导致毒力减弱。我们的研究证明了Ras/cAMP/PKA信号通路的过度激活对C.auris发病机理的独特贡献,并提出了C.auris介导的念珠菌病的潜在治疗靶标。重要性耳念珠菌作为一种多药耐药真菌病原体是一个主要问题。虽然我们以前的研究强调了cAMP/蛋白激酶A(PKA)通路在调节耐药性中的关键作用,应激反应,形态发生,倍性变化,生物膜的形成,以及这种病原体的致病性,其监管机制尚不清楚。在我们的研究中,我们提供的证据表明,耳梭菌的cAMP/PKA信号通路主要由小的GTP酶RAS而不是G蛋白偶联受体控制.此外,我们发现cAMP的负反馈调节,由磷酸二酯酶控制,通过促进对高温和营养缺乏的抵抗力,对C.auris毒力至关重要。这些发现强调了C.auris中Ras/cAMP/PKA信号通路的多种病理生物学意义,阐明潜在的治疗靶点和对抗这种多药耐药真菌病原体的策略。
    The emergence of multidrug-resistant fungal pathogens is a significant concern for global public health. Candida auris poses a considerable threat as a multidrug-resistant fungal pathogen. Our recent study revealed that the adenylyl cyclase Cyr1 and protein kinase A (PKA) pathways play distinct and redundant roles in drug resistance and pathogenicity of C. auris. However, the upstream and negative feedback regulatory mechanisms of C. auris are not yet fully understood. In this study, we discovered that the small GTPase Ras1, along with its nucleotide exchange factor Cdc25 and GTPase-activating protein Ira2, plays a major role in regulating cAMP/PKA-dependent traits, while G-protein-coupled receptor Gpr1 and heterotrimeric G-protein α subunit Gpa2 play a minor role. Pde2 plays a major role in negative feedback regulation of the cAMP/PKA pathway, while Pde1 plays a minor role. Hyperactivation of the Ras/cAMP/PKA pathway by deleting PDE2 or BCY1 renders C. auris cells thermosensitive and susceptible to nutrient deficiency, which leads to attenuated virulence. Our study demonstrates the distinct contributions of hyperactivation of the Ras/cAMP/PKA signaling pathway to C. auris pathogenesis and suggests potential therapeutic targets for C. auris-mediated candidiasis. IMPORTANCE Candida auris is a major concern as a multidrug-resistant fungal pathogen. While our previous studies highlighted the crucial roles of the cAMP/protein kinase A (PKA) pathway in regulating drug resistance, stress responses, morphogenesis, ploidy change, biofilm formation, and pathogenicity in this pathogen, their regulatory mechanism remains unclear. In our study, we provided evidence that the cAMP/PKA signaling pathway in C. auris is primarily governed by the small GTPase RAS rather than a G-protein-coupled receptor. Additionally, we discovered that the negative feedback regulation of cAMP, controlled by phosphodiesterases, is vital for C. auris virulence by promoting resistance to high temperatures and nutrient deficiencies. These findings underscore the diverse pathobiological significance of the Ras/cAMP/PKA signaling pathway in C. auris, shedding light on potential therapeutic targets and strategies for combating this multidrug-resistant fungal pathogen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号