nucleo-cytoplasmic transport

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    mRNA decay is a key step in regulating the cellular proteome. Processing bodies (P-bodies) are thought to be sites of mRNA decay and/or storage. P-body units assemble into P-body granules under stress conditions. How this assembly is regulated, however, remains poorly understood. Here, we show, in the yeast Saccharomyces cerevisiae, that the translational repressor Scd6 and the decapping stimulator Edc3 act partially redundantly in P-body assembly by sequestering the Dcp1-Dcp2 (denoted Dcp1/2) decapping complex in the cytoplasm and preventing it from becoming imported into the nucleus by the karyopherin β protein Kap95. One of two nuclear localization signals in Dcp2 overlaps with the RNA-binding site, suggesting an additional mechanism to regulate Dcp1/2 localization. Nuclear Dcp1/2 does not drive mRNA decay and might be stored there as a readily releasable pool, indicating a dynamic equilibrium between cytoplasmic and nuclear Dcp1/2. Cytoplasmic Dcp1/2 is linked to Dhh1 via Edc3. Functional P-bodies are present at the endoplasmic reticulum where Dcp2 potentially acts to increase the local concentration of Dhh1 through interaction with Edc3 to drive phase separation and hence P-body formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物通过先天免疫反应抵抗感染,这通常与增长放缓有关。植物生长和防御之间权衡的分子机制尚不清楚。本研究表明,在转基因AtRAN1和AtRAN1Q72L的组成型过表达过程中,赤霉素(GA)和水杨酸(SA)信号通路介导的生长/防御权衡是分离的(活性,GTP锁定形式)拟南芥属植物。众所周知,小的GTP结合蛋白Ran(Ras相关核蛋白)在蛋白质的核-细胞质转运中起作用。尽管有大量证据表明特定蛋白质的核-细胞质分配可以参与激素信号传导,Ran依赖性核转运在激素信号传导中的作用尚不完全清楚.在这份报告中,我们采用遗传学和分子学相结合的方法来揭示AtRAN1是否参与GA和SA信号通路.组成性过表达的AtRAN1促进了伸长生长和抗病性反应,而在atran2atran3双突变体背景中过表达AtRAN1Q72L明显抑制了伸长生长和防御反应。此外,我们发现AtRAN1通过促进DELLA蛋白RGA在细胞核中的稳定性和通过调节NPR1核定位来协调植物的生长和防御。有趣的是,过表达AtRAN1的转基因水稻(Oryzasativa)显示出单株植物高度和产量的增加。总之,通过AtRAN1过表达实现增长/防御权衡的能力提供了一种最大化作物产量以满足不断增长的全球粮食需求的方法。
    Plants resist infection through an innate immune response, which is usually associated with slowing of growth. The molecular mechanisms underlying the trade-off between plant growth and defense remain unclear. The present study reveals that growth/defense trade-offs mediated by gibberellin (GA) and salicylic acid (SA) signaling pathways are uncoupled during constitutive overexpression of transgenic AtRAN1 and AtRAN1Q72L (active, GTP-locked form) Arabidopsis plants. It is well known that the small GTP-binding protein Ran (a Ras-related nuclear protein) functions in the nucleus-cytoplasmic transport of proteins. Although there is considerable evidence indicating that nuclear-cytoplasmic partitioning of specific proteins can participate in hormone signaling, the role of Ran-dependent nuclear transport in hormone signaling is not yet fully understood. In this report, we used a combination of genetic and molecular methods to reveal whether AtRAN1 is involved in both GA and SA signaling pathways. Constitutively overexpressed AtRAN1 promoted both elongation growth and the disease resistance response, whereas overexpression of AtRAN1Q72L in the atran2atran3 double mutant background clearly inhibited elongation growth and the defense response. Furthermore, we found that AtRAN1 coordinated plant growth and defense by promoting the stability of the DELLA protein RGA in the nucleus and by modulating NPR1 nuclear localization. Interestingly, genetically modified rice (Oryza sativa) overexpressing AtRAN1 exhibited increased plant height and yield per plant. Altogether, the ability to achieve growth/defense trade-offs through AtRAN1 overexpression provides an approach to maximizing crop yield to meet rising global food demands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CSL transcription factors are central to signal transduction in the highly conserved Notch signaling pathway. CSL acts as a molecular switch: depending on the cofactors recruited, CSL induces either activation or repression of Notch target genes. Unexpectedly, CSL depends on its cofactors for nuclear entry, despite its role as gene regulator. In Drosophila, the CSL homologue Suppressor of Hairless (Su(H)), recruits Hairless (H) for repressor complex assembly, and eventually for nuclear import. We recently found that Su(H) is subjected to a dynamic nucleo-cytoplasmic shuttling, thereby strictly following H subcellular distribution. Hence, regulation of nuclear availability of Su(H) by H may represent a new layer of control of Notch signaling activity. Here we extended this work on the murine CSL homologue RBPJ. Using a \'murinized\' fly model bearing RBPJwt in place of Su(H) at the endogenous locus we demonstrate that RBPJ protein likewise follows H subcellular distribution. For example, overexpression of a H*NLS3 protein variant defective of nuclear import resulted in a cytosolic localization of RBPJ protein, whereas the overexpression of a H*NES protein variant defective in the nuclear export signal caused the accumulation of RBPJ protein in the nucleus. Evidently, RBPJ is exported from the nucleus as well. Overall these data demonstrate that in our fly model, RBPJ is subjected to H-mediated nucleo-cytoplasmic shuttling as is Su(H). These data raise the possibility that nuclear availability of mammalian CSL proteins is likewise restricted by cofactors, and may hence present a more general mode of regulating Notch signaling activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Transportin-1(Trn1),也称为核蛋白β2(Kapβ2),可能是在Importin-β之后,核动力蛋白-β家族的特征最好的核输入受体,但是它在细胞中的某些功能仍然令人困惑或刚刚出现。自25年前首次确认Trn1为hnRNPA1的核输入受体以来,一些分子和结构研究揭示并完善了我们对Trn1介导的核导入的理解.特别是,在分子水平上对Trn1对NLS识别的理解,随着一类新的NLS被称为PY-NLS的识别,迈出了决定性的一步。它们构成了Trn1的最佳特征底物。除了PY-NLS,许多Trn1货物港口的NLS与原型PY-NLS不同,这使得Trn1对货物识别的全球理解变得复杂。虽然PY-NLS识别已经很好地建立并得到了几个结构的支持,Trn1对非PY-NLS的识别知之甚少,但最近的报道已经开始揭示对这种NLS的认识。除了其作为核进口受体的主要和长期的活性,Trn1最近被证明是在核进口之外的月光下。例如,Trn1参与了病毒脱衣,纤毛运输和调节易聚集蛋白的相分离特性。这里,我们专注于Trn1介导的核进口的结构和功能方面,以及Trn1的月光活动。
    Transportin-1 (Trn1), also known as karyopherin-β2 (Kapβ2), is probably the best-characterized nuclear import receptor of the karyopherin-β family after Importin-β, but certain aspects of its functions in cells are still puzzling or are just recently emerging. Since the initial identification of Trn1 as the nuclear import receptor of hnRNP A1 ∼25 years ago, several molecular and structural studies have unveiled and refined our understanding of Trn1-mediated nuclear import. In particular, the understanding at a molecular level of the NLS recognition by Trn1 made a decisive step forward with the identification of a new class of NLSs called PY-NLSs, which constitute the best-characterized substrates of Trn1. Besides PY-NLSs, many Trn1 cargoes harbour NLSs that do not resemble the archetypical PY-NLS, which complicates the global understanding of cargo recognition by Trn1. Although PY-NLS recognition is well established and supported by several structures, the recognition of non-PY-NLSs by Trn1 is far less understood, but recent reports have started to shed light on the recognition of this type of NLSs. Aside from its principal and long-established activity as a nuclear import receptor, Trn1 was shown more recently to moonlight outside nuclear import. Trn1 has for instance been caught in participating in virus uncoating, ciliary transport and in modulating the phase separation properties of aggregation-prone proteins. Here, we focus on the structural and functional aspects of Trn1-mediated nuclear import, as well as on the moonlighting activities of Trn1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Nuclear-cytoplasmic localization is an efficient way to regulate transcription factors and chromatin remodelers. Altering the location of existing protein pools also facilitates a more rapid response to changes in cell activity or extracellular signals. There are several examples of proteins that are regulated by nucleo-cytoplasmic shuttling, which are required for Drosophila neuroblast development. Disruption of the localization of homologs of these proteins has also been linked to several neurodegenerative disorders in humans. Drosophila has been used extensively to model the neurodegenerative disorders caused by aberrant nucleo-cytoplasmic localization. Here, we focus on the role of alternative nucleo-cytoplasmic protein localization in regulating proliferation and cell fate decisions in the Drosophila neuroblast and in neurodegenerative disorders. We also explore the analogous role of RNA binding proteins and mRNA localization in the context of regulation of nucleo-cytoplasmic localization during neural development and a role in neurodegenerative disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The evolutionarily conserved multiprotein complex THO/TREX is required for pre-mRNA processing, mRNA export and the maintenance of genome stability. In this study, we analyzed the genome-wide distribution of human THOC7, a component of human THO, by chromatin immunoprecipitation sequencing. The analysis revealed that human THOC7 occupies repetitive sequences, which include microsatellite repeats in genic and intergenic regions and telomeric repeats. The majority of the THOC7 ChIP peaks overlapped with those of the elongating form of RNA polymerase II and R-loops, indicating that THOC7 accumulates in transcriptionally active repeat regions. Knocking down THOC5, an RNA-binding component of human THO, by siRNA induced the accumulation of γH2AX in the repeat regions. We also observed an aberration in the telomeres in the THOC5-depleted condition. These results suggest that human THO restrains the transcription-associated instability of repeat regions in the human genome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Activation of the integrated stress response (ISR), alterations in nucleo-cytoplasmic (N/C) transport and changes in alternative splicing regulation are all common traits of the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). However, whether these processes act independently from each other, or are part of a coordinated mechanism of gene expression regulation that is affected in pathogenic conditions, is still rather undefined. To answer these questions, in this work we set out to characterise the functional connections existing between ISR activation and nucleo-cytosol trafficking and nuclear localization of spliceosomal U-rich small nuclear ribonucleoproteins (UsnRNPs), the core constituents of the spliceosome, and to study how ALS-linked mutant proteins affect this interplay. Activation of the ISR induces a profound reorganization of nuclear Gems and Cajal bodies, the membrane-less particles that assist UsnRNP maturation and storage. This effect requires the cytoplasmic assembly of SGs and is associated to the disturbance of the nuclear import of UsnRNPs by the snurportin-1/importin-β1 system. Notably, these effects are reversed by both inhibiting the ISR or upregulating importin-β1. This indicates that SGs are major determinants of Cajal bodies assembly and that the modulation of N/C trafficking of UsnRNPs might control alternative splicing in response to stress. Importantly, the dismantling of nuclear Gems and Cajal bodies by ALS-linked mutant FUS or C9orf72-derived dipeptide repeat proteins is halted by overexpression of importin-β1, but not by inhibition of the ISR. This suggests that changes in the nuclear localization of the UsnRNP complexes induced by mutant ALS proteins are uncoupled from ISR activation, and that defects in the N/C trafficking of UsnRNPs might play a role in ALS pathogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号