non-structural proteins

非结构蛋白
  • 文章类型: Journal Article
    构建了重组罗斯河病毒(RRV),该病毒包含与非结构蛋白3(nsP3)融合的荧光蛋白mCherry,这允许病毒复制的实时成像。RRV-mCherry在nsP3基因之后包含天然蛋白石终止密码子,或者在没有终止密码子的情况下构建。mCherry融合蛋白不干扰病毒生命周期,并且终止密码子的缺失不改变RRV-mCherry的复制能力。RRV-mCherry和基孔肯雅病毒-mCherry感染的比较,然而,在HEK293T细胞中显示RRV-mCherry复制的细胞类型依赖性延迟。这种延迟不是由单元格输入的差异引起的,而是由RRV抑制剂ZAP(锌指CCCH型,抗病毒1)。数据表明,甲病毒的病毒复制是细胞类型依赖性的,并且可能对每种甲病毒都是独特的。
    A recombinant Ross River virus (RRV) that contains the fluorescent protein mCherry fused to the non-structural protein 3 (nsP3) was constructed, which allowed real-time imaging of viral replication. RRV-mCherry contained either the natural opal stop codon after the nsP3 gene or was constructed without a stop codon. The mCherry fusion protein did not interfere with the viral life cycle and deletion of the stop codon did not change the replication capacity of RRV-mCherry. Comparison of RRV-mCherry and chikungunya virus-mCherry infections, however, showed a cell type-dependent delay in RRV-mCherry replication in HEK 293T cells. This delay was not caused by differences in cell entry, but rather by an impeded nsP expression caused by the RRV inhibitor ZAP (zinc finger CCCH-Type, antiviral 1). The data indicate that viral replication of alphaviruses is cell-type dependent, and might be unique for each alphavirus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蓝舌(BT)对畜牧业构成重大威胁,影响各种动物物种,造成巨大的经济损失。许多BT病毒(BTV)血清型的存在阻碍了控制工作,强调广谱疫苗的需要。
    在这项研究中,我们评估了BTV关键非结构(NS)蛋白中的保守氨基酸序列,并鉴定了大量高度保守的鼠和牛特异性MHCI类限制性(MHC-I)CD8+和MHC-II限制性CD4+表位.然后我们筛选了这些保守表位的抗原性,变应原性,毒性,和溶解度。利用这些表位,我们开发了以Toll样受体(TLR-4)激动剂为基础的广谱多表位疫苗.使用C-IMMSIM服务器在计算机中评估预测的促炎细胞因子应答。使用Robetta和GalaxyWEB服务器实现了结构建模和细化。最后,我们通过广泛的100纳秒分子动力学模拟评估了对接复合物的稳定性,然后考虑将疫苗用于密码子优化和计算机模拟克隆.
    我们在NS1和NS2蛋白中发现了许多符合这些标准的表位,并开发了硅广谱疫苗。免疫模拟研究表明,这些疫苗在接种组中诱导高水平的IFN-γ和IL-2。蛋白质-蛋白质对接分析证明了对TLR-4具有强结合亲和力的有希望的表位。对接的复合物是稳定的,具有最小的均方根偏差和均方根波动值。最后,模拟克隆质粒的GC含量较高,密码子适应指数>0.8,表明它们适合在原核系统中表达蛋白质疫苗。
    这些下一代疫苗设计很有前景,需要在湿实验室实验中进一步研究以评估其免疫原性。安全,和功效在家畜中的实际应用。我们的发现为开发一个全面的,广谱疫苗,可能彻底改变畜牧业的BT控制和预防策略。
    UNASSIGNED: Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines.
    UNASSIGNED: In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning.
    UNASSIGNED: We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system.
    UNASSIGNED: These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    口蹄疫(FMD)是偶脚动物的传染性病毒性疾病。用灭活疫苗免疫可有效控制疾病。在流行地区进行六个月的疫苗接种方案已被证明是有效的。为了区分受感染的动物和接种疫苗的动物,非结构蛋白(NSP)在疫苗生产过程中被排除。虽然在接种和感染的动物中都可以观察到结构蛋白(SP)的抗体,NSP抗体仅在自然感染中可检测到。检测疫苗抗原制剂中NSP的质量控制测定,因此在口蹄疫疫苗生产过程中至关重要。在这项研究中,我们设计了化学发光斑点印迹法检测FMDV的3A和3BNSP。它足够灵敏,可以检测到高达20ng的NSP,并表现出特异性,因为它不与病毒SP反应。这种具有成本效益的测定法在口蹄疫疫苗生产的质量控制评估中具有希望。
    Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本书本章简要概述了SARS-CoV-2,这是导致COVID-19大流行的病毒。它探索了基于形态和核酸组成的病毒分类,重点是DNA和RNA病毒,SARS-CoV-2结构包括详细的结构蛋白和非结构蛋白,和病毒复制机制。本章接着深入研究冠状病毒的特点和多样性,特别是SARS-CoV-2,突出了它与其他β-冠状病毒的相似性。复制和转录复合物,RNA延伸,封顶,以及辅助蛋白在病毒复制和调节宿主免疫应答中的作用被广泛讨论。
    This book chapter presents a concise overview of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. It explores viral classification based on morphology and nucleic acid composition with a focus on DNA and RNA viruses, the SARS-CoV-2 structure including the structural as well as nonstructural proteins in detail, and the viral replication mechanisms. The chapter then delves into the characteristics and diversity of coronaviruses, particularly SARS-CoV-2, highlighting its similarities with other beta-coronaviruses. The replication and transcription complex, RNA elongation, and capping, as well as the role of accessory proteins in viral replication and modulation of the host immune response is discussed extensively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    严重急性呼吸道综合征冠状病毒2(SARS-CoV-2)是一种正链RNA病毒,处于最近全球大流行的中心。作为冠状病毒科的一员,它具有一些特征,例如在特制的复制细胞器中复制的非常大的基因组(>30kb)。复制细胞器的生物发生需要内质网膜的显着和一致的重排,由一组完整的膜非结构蛋白(NSP3,4和6)与宿主的病毒复制酶和其他支持转录和复制的因子一起表达的工作。复制细胞器内RNA复制的主要位点是双膜囊泡(DMV)。DMV的小尺寸需要产生高的膜曲率,以及双膜布置的稳定性,但DMV形成的机制仍然难以捉摸。在这次审查中,我们讨论了我们对冠状病毒膜重排的分子基础的理解的最新突破。我们结合已建立的NSP3-4蛋白质-蛋白质相互作用模型来驱动双膜形成,和最近的数据强调了影响膜曲率的脂质成分和宿主因子蛋白(例如网状结构)的作用,提出了SARS-CoV-2中DMV形成的修正模型。
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded RNA virus that sits at the centre of the recent global pandemic. As a member of the coronaviridae family of viruses, it shares features such as a very large genome (>30 kb) that is replicated in a purpose-built replication organelle. Biogenesis of the replication organelle requires significant and concerted rearrangement of the endoplasmic reticulum membrane, a job that is carried out by a group of integral membrane non-structural proteins (NSP3, 4 and 6) expressed by the virus along with a host of viral replication enzymes and other factors that support transcription and replication. The primary sites for RNA replication within the replication organelle are double membrane vesicles (DMVs). The small size of DMVs requires generation of high membrane curvature, as well as stabilization of a double-membrane arrangement, but the mechanisms that underlie DMV formation remain elusive. In this review, we discuss recent breakthroughs in our understanding of the molecular basis for membrane rearrangements by coronaviruses. We incorporate established models of NSP3-4 protein-protein interactions to drive double membrane formation, and recent data highlighting the roles of lipid composition and host factor proteins (e.g. reticulons) that influence membrane curvature, to propose a revised model for DMV formation in SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:登革热,由登革热病毒(DENV)传播的蚊媒病毒性疾病,最近几天,已经成为全球最令人担忧的健康问题之一。在世界热带和亚热带地区,DENV感染的风险大多很高。受DENV影响的患者的死亡率不断增加,主要是由于缺乏抗登革热病毒特异性合成药物成分。
    背景:重新利用合成药物一直是对抗几种病原体的有效工具,包括DENV。然而,尽管情况严重,到目前为止,只有登瓦夏疫苗被开发出来来对抗这种致命的疾病,主要是因为了解该疾病的实际致病性的局限性。
    方法:为了解决这一特殊问题并探索实际的疾病病理学,几个潜在的目标,像三个结构蛋白和七个非结构(NS)蛋白,以及它们合成和天然来源的抑制剂,已经使用对接模拟进行了筛选。
    结果:探索这些目标,以及它们的抑制剂,已经在基于分子对接的筛选中进行了广泛的研究,以加强治疗。
    结论:这些筛选的抑制剂可能有助于设计新的同类潜在化合物来对抗登革热及其并发症。
    Dengue, a mosquito-borne viral disease spread by the dengue virus (DENV), has become one of the most alarming health issues in the global scenario in recent days. The risk of infection by DENV is mostly high in tropical and subtropical areas of the world. The mortality rate of patients affected with DENV is ever-increasing, mainly due to a lack of anti-dengue viral-specific synthetic drug components.
    Repurposing synthetic drugs has been an effective tool in combating several pathogens, including DENV. However, only the Dengvaxia vaccine has been developed so far to fight against the deadly disease despite the grave situation, mainly because of the limitations of understanding the actual pathogenicity of the disease.
    To address this particular issue and explore the actual disease pathobiology, several potential targets, like three structural proteins and seven non-structural (NS) proteins, along with their inhibitors of synthetic and natural origin, have been screened using docking simulation.
    Exploration of these targets, along with their inhibitors, has been extensively studied in culmination with molecular docking-based screening to potentiate the treatment.
    These screened inhibitors could possibly be helpful for the designing of new congeneric potential compounds to combat dengue fever and its complications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    早幼粒细胞白血病(PML)蛋白是PML核体(PML-NBs)中不可或缺的元素,在多种细胞功能的调节中发挥关键作用,同时协调针对病毒入侵的先天免疫应答。同时,许多病毒通过靶向PML-NB而逃避免疫检测。日本脑炎病毒(JEV)是引起日本脑炎的黄病毒,一种严重的神经系统疾病,影响人类和动物。然而,JEV通过PML-NB逃避免疫的机制几乎没有研究。在本研究中,PK15细胞感染JEV,计数细胞内PML-NBs的数量。免疫荧光结果表明,与病毒抗原阴性细胞相比,JEV抗原阳性细胞中PML-NBs的数量显着减少。随后,将10种JEV蛋白克隆并转染到PK15细胞中。结果表明,JEV非结构蛋白,NS2B,NS3、NS4A、NS4B,和NS5,显著减少了PML-NBs的数量。用五种JEV蛋白和各种猪PML同种型进行共转染。结果表明,NS2B与PML4和PML5共定位,NS4A与PML1和PML4共定位,NS4B与PML1,PML3,PML4和PML5共定位,而NS3和NS5与所有五种PML亚型相互作用。此外,PML亚型的异位表达证实了PML1、PML3、PML4和PML5抑制JEV复制。这些发现表明,JEV通过与PML亚型的相互作用破坏PML-NBs的结构,可能导致宿主抗病毒免疫反应的减弱。
    Promyelocytic leukemia (PML) protein constitutes an indispensable element within PML-nuclear bodies (PML-NBs), playing a pivotal role in the regulation of multiple cellular functions while coordinating the innate immune response against viral invasions. Simultaneously, numerous viruses elude immune detection by targeting PML-NBs. Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis, a severe neurological disease that affects humans and animals. However, the mechanism through which JEV evades immunity via PML-NBs has been scarcely investigated. In the present study, PK15 cells were infected with JEV, and the quantity of intracellular PML-NBs was enumerated. The immunofluorescence results indicated that the number of PML-NBs was significantly reduced in JEV antigen-positive cells compared to viral antigen-negative cells. Subsequently, ten JEV proteins were cloned and transfected into PK15 cells. The results revealed that JEV non-structural proteins, NS2B, NS3, NS4A, NS4B, and NS5, significantly diminished the quantity of PML-NBs. Co-transfection was performed with the five JEV proteins and various porcine PML isoforms. The results demonstrated that NS2B colocalized with PML4 and PML5, NS4A colocalized with PML1 and PML4, NS4B colocalized with PML1, PML3, PML4, and PML5, while NS3 and NS5 interacted with all five PML isoforms. Furthermore, ectopic expression of PML isoforms confirmed that PML1, PML3, PML4, and PML5 inhibited JEV replication. These findings suggest that JEV disrupts the structure of PML-NBs through interaction with PML isoforms, potentially leading to the attenuation of the host\'s antiviral immune response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据世界卫生组织的数据,SARS-CoV-2是全球大流行的原因,在2020年和2021年共造成1490万人死亡。该病毒呈现每个细胞感染每个核苷酸位点10-5至10-3个取代的突变率(s/n/c)。由于这个原因,旨在了解这种病毒进化的研究可以帮助我们预见(通过未来开发新的检测策略和疫苗来防止这种病毒在人类宿主中的感染),这种病毒引起的大流行将再次产生。在这项研究中,我们对冠状病毒基因组中Nsp(非结构蛋白)结构域的变化进行了功能注释和鉴定.对13个选定的冠状病毒pangenomes的比较表明,共有69个蛋白质家族和57个功能与基因组之间的结构域差异相关。观察到非结构蛋白的显著进化保守性。这使我们能够识别高致病性人类冠状病毒并将其分类为α,beta,gamma,和三角洲集团。设计的Nsp集群提供了对SARS-CoV-2轨迹的洞察,表明它继续快速发展。进化标记使我们能够区分系统发育上不同的群体,病毒基因型,以及α和β冠状病毒属之间的变异。这些类型的进化研究提供了使用这些Nsp作为病毒疗法靶标的机会之窗。
    SARS-CoV-2 was the cause of the global pandemic that caused a total of 14.9 million deaths during the years 2020 and 2021, according to the WHO. The virus presents a mutation rate between 10-5 and 10-3 substitutions per nucleotide site per cell infection (s/n/c). Due to this, studies aimed at knowing the evolution of this virus could help us to foresee (through the future development of new detection strategies and vaccines that prevent the infection of this virus in human hosts) that a pandemic caused by this virus will be generated again. In this research, we performed a functional annotation and identification of changes in Nsp (non-structural proteins) domains in the coronavirus genome. The comparison of the 13 selected coronavirus pangenomes demonstrated a total of 69 protein families and 57 functions associated with the structural domain\'s differentials between genomes. A marked evolutionary conservation of non-structural proteins was observed. This allowed us to identify and classify highly pathogenic human coronaviruses into alpha, beta, gamma, and delta groups. The designed Nsp cluster provides insight into the trajectory of SARS-CoV-2, demonstrating that it continues to evolve rapidly. An evolutionary marker allows us to discriminate between phylogenetically divergent groups, viral genotypes, and variants between the alpha and betacoronavirus genera. These types of evolutionary studies provide a window of opportunity to use these Nsp as targets of viral therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    β-冠状病毒家族,包括严重急性呼吸系统综合症冠状病毒2(SARS-CoV-2),严重急性呼吸系统综合症冠状病毒(SARS),和中东呼吸综合征冠状病毒(MERS),在过去的二十年里引发了流行病。随着未来大流行的可能性,研究冠状病毒家庭成员对于提高知识和治疗是必要的。这些病毒拥有16种非结构蛋白,其中许多在病毒复制和其他重要功能中起关键作用。一种这样的重要蛋白质是非结构蛋白10(nsp10),充当nsp14和nsp16的关键刺激物,从而影响RNA校对和病毒RNA帽的形成。研究致病性冠状病毒的nsp10对于揭示其多功能作用至关重要。我们的研究涉及来自MERS的全长nsp10的生化和生物物理表征,SARS和SARS-CoV-2。为了阐明它们的寡聚状态,我们采用了多检测尺寸排阻色谱(多检测SEC)与多角度静态光散射(MALS)和小角度X射线散射(SAXS)技术的组合。我们的发现表明,全长nsp10主要以单体形式存在于溶液中,而截断的版本倾向于寡聚体化。SAXS实验揭示了nsp10的球形,这是在所有三种冠状病毒中保守的特征,尽管MERSnsp10与SARS和SARS-CoV-2nsp10的差异最大。总之,来自SARS的未结合的nsp10蛋白,MERS,SARS-CoV-2在溶液中表现出球状且主要是单体状态。
    The β-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    针对SARS-CoV-2感染的有效疗法的开发依赖于病毒-宿主界面的机械知识。病毒和宿主蛋白之间丰富的物理相互作用已被确定,但很少有功能特征。利用苍蝇遗传学的力量,我们开发了一种全面的果蝇COVID-19资源(DCR),由公开可用的菌株组成,用于条件组织特异性表达所有SARS-CoV-2编码的蛋白质,UAS-人cDNA转基因系编码已建立的宿主病毒相互作用因子,和GAL4插入系破坏SARS-CoV-2人类相互作用蛋白的蝇同源物。我们证明了DCR在功能上评估SARS-CoV-2基因和候选人类结合伴侣的实用性。我们表明NSP8与几个人类候选人有很强的遗传相互作用,最突出的是ATE1精氨酸转移酶诱导肌动蛋白精氨酸化和细胞骨架解体,两种ATE1抑制剂可以逆转NSP8表型。DCR可以在主要遗传模型系统中对SARS-CoV-2成分进行并行的全球范围功能分析。
    Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号