non-genetic individuality

  • 文章类型: Journal Article
    在衰老中,生理网络的功能下降速度在个体之间不同,产生广泛的寿命分布。尽管70%的人类寿命差异仍然无法由遗传因素解释,关于衰老生理异质性的内在来源知之甚少。要了解复杂的生理网络如何产生寿命变化,需要新的方法。这里,我们提出Asynch-seq,一种使用等基因种群内基因表达异质性来研究产生寿命变异的过程的方法。通过收集数千个单个转录组,我们捕获了秀丽隐杆线虫“泛转录组”-非遗传变异的高度分辨图谱。我们使用我们的地图集来指导大规模的扰动筛选,确定种系和体细胞之间的总mRNA含量的解耦是衰老中生理异质性的最大来源。由多效基因驱动,这些基因的敲除大大降低了寿命差异。我们的工作证明了如何应用生理异质性的系统映射来减少衰老中的个体间差异。
    In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans \"pan-transcriptome\"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了在大肠杆菌趋化系统中的体内单细胞FRET测量,揭示了普遍的信号传导变异性,随着时间的推移,在等基因群体中的细胞和单个细胞内。我们量化了适应的细胞间变异性,配体反应,以及稳态输出水平,并从基因表达噪声分析网络设计在塑造这种多样性中的作用。在基因表达没有变化的情况下,我们发现单细胞表现出强烈的时间波动。我们提供的证据表明,这种信号噪声可以来自至少两个来源:(i)适应酶的随机活动,和(ii)在没有适应的情况下的受体激酶动力学。我们证明在某些条件下,(ii)可以产生巨大的波动,将整个细胞的信号活动驱动为随机的两状态切换机制。我们的发现强调了分子噪声的重要性,不仅出现在基因表达中,也出现在蛋白质网络中。
    We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state switching regime. Our findings underscore the importance of molecular noise, arising not only in gene expression but also in protein networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号