neuronal fate

神经元命运
  • 文章类型: Journal Article
    Notch信号是一种进化上保守的途径,用于指定二元神经元的命运,然而,它如何在不同的背景下指定不同的命运仍然难以捉摸。在我们的论文中,使用果蝇层神经元类型(L1-L5)作为模型,我们显示初级同源域转录因子(HDTF)Bsh激活次级HDTFsAp(L4)和Pdm3(L5),并指定L4/L5神经元命运。在这里,我们测试了Notch信号使Bsh能够区分指定L4和L5命运的假设。我们显示了新生L4和L5神经元之间的不对称Notch信号,但他们不是兄弟姐妹,L4中的Notch信号传导是由于相邻L1神经元中的Delta表达。虽然Notch信号和Bsh表达是相互独立的,陷波对于Bsh指定L5上的L4命运是必要且足够的。与NotchOFFL5相比,NotchONL4具有独特的开放染色质景观,允许Bsh结合不同的基因组基因座,导致L4特异性身份基因转录。我们提出了一种新的模型,其中Notch信号与初级HDTF活性整合,通过直接或间接产生独特的开放染色质景观来使神经元类型多样化,从而限制初级HDTF可以激活的基因库。
    Notch signaling is an evolutionarily conserved pathway for specifying binary neuronal fates, yet how it specifies different fates in different contexts remains elusive. In our accompanying paper, using the Drosophila lamina neuron types (L1-L5) as a model, we show that the primary homeodomain transcription factor (HDTF) Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates. Here we test the hypothesis that Notch signaling enables Bsh to differentially specify L4 and L5 fates. We show asymmetric Notch signaling between newborn L4 and L5 neurons, but they are not siblings; rather, Notch signaling in L4 is due to Delta expression in adjacent L1 neurons. While Notch signaling and Bsh expression are mutually independent, Notch is necessary and sufficient for Bsh to specify L4 fate over L5. The NotchON L4, compared to NotchOFF L5, has a distinct open chromatin landscape which allows Bsh to bind distinct genomic loci, leading to L4-specific identity gene transcription. We propose a novel model in which Notch signaling is integrated with the primary HDTF activity to diversify neuron types by directly or indirectly generating a distinct open chromatin landscape that constrains the pool of genes that a primary HDTF can activate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    代谢物如巴豆酰辅酶A和乳酰辅酶A通过共价修饰组蛋白影响基因表达,被称为组蛋白赖氨酸巴豆化(Kcr)和赖氨酸乳酸化(Kla)。然而,存在模式,动态变化,哺乳动物发育过程中的生物学功能以及这些修饰与组蛋白赖氨酸乙酰化和基因表达的关联仍然未知。这里,我们发现组蛋白Kcr和Kla在大脑中广泛分布,并在神经发育过程中发生整体变化。通过分析H3K9ac的全基因组动态,H3K9cr和H3K18la联合ATAC和RNA测序,我们发现这些标记与染色质状态和基因表达密切相关,并广泛参与转录组重塑,以促进发育中的端脑细胞命运转变。重要的是,我们证明了全局Kcr和Kla水平不是转录的结果,并将组蛋白脱乙酰酶(HDACs)1-3鉴定为H3K18la的新型“擦除剂”。使用P19细胞作为诱导神经分化系统,我们发现MS-275对HDAC1-3的抑制通过同时刺激多个组蛋白赖氨酸酰化作用而预先激活神经元转录程序。这些发现表明,组蛋白Kcr和Kla在神经发育的表观遗传调控中起着至关重要的作用。
    Metabolites such as crotonyl-CoA and lactyl-CoA influence gene expression by covalently modifying histones, known as histone lysine crotonylation (Kcr) and lysine lactylation (Kla). However, the existence patterns, dynamic changes, biological functions and associations of these modifications with histone lysine acetylation and gene expression during mammalian development remain largely unknown. Here, we find that histone Kcr and Kla are widely distributed in the brain and undergo global changes during neural development. By profiling the genome-wide dynamics of H3K9ac, H3K9cr and H3K18la in combination with ATAC and RNA sequencing, we reveal that these marks are tightly correlated with chromatin state and gene expression, and extensively involved in transcriptome remodeling to promote cell-fate transitions in the developing telencephalon. Importantly, we demonstrate that global Kcr and Kla levels are not the consequence of transcription and identify the histone deacetylases (HDACs) 1-3 as novel \'erasers\' of H3K18la. Using P19 cells as an induced neural differentiation system, we find that HDAC1-3 inhibition by MS-275 pre-activates neuronal transcriptional programs by stimulating multiple histone lysine acylations simultaneously. These findings suggest that histone Kcr and Kla play crucial roles in the epigenetic regulation of neural development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肠神经系统终末分化的总体主题,动物神经系统的自主作用单位,到目前为止还没有发现。我们在这里描述了位于蠕虫前肠(咽)内的线虫秀丽隐杆线虫的肠神经系统分化的总体调节逻辑。果蝇Sineoculis同源盒基因的线虫同源物,ceh-34,表达在所有14类相互连接的咽神经元从他们出生的整个生命时间,但在整个动物中没有其他神经元类型。组成型和时间控制的ceh-34去除表明,ceh-34是启动和维持所有咽神经元类的神经元类型特异性终末分化程序所必需的,包括他们的电路组件。通过额外的遗传功能丧失分析,我们显示在每个咽神经元类中,ceh-34与不同的同源结构域转录因子合作以区分不同的咽神经元类别。我们的分析强调了同源异型盒基因在神经元身份规范中的关键作用,并将它们与肠神经系统的神经元回路组装的控制联系起来。连同咽神经系统的简单性以及Sineoculis同源物的规范,我们的发现引起了人们对神经系统早期进化的猜测。
    Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    下丘脑中的神经元在学习和先天行为期间调节动物的状态,下丘脑发育的改变可能会导致焦虑等病理状况,抑郁症或肥胖症。尽管有许多关于下丘脑发育和功能的研究,胚胎发育和先天行为之间的联系仍未被探索。这里,专注于胚胎表达的含有同源结构域的基因发育中的大脑同源盒1(Dbx1),我们探索了胚胎谱系之间的关系,出生后神经元身份和对先天线索的谱系特异性反应。我们发现Dbx1在多个发育中的下丘脑亚结构域中广泛表达。使用标准和可诱导的命运映射来追踪Dbx1衍生的神经元,我们确定了它们对下丘脑核中特定神经元亚型的贡献,并进一步绘制了它们响应于一系列明确定义的先天行为的激活模式。
    Dbx1来源的神经元占据多个出生后下丘脑核,包括外侧下丘脑(LH),弓状核(Arc)和下丘脑腹侧内侧(VMH)。在这些原子核中,Dbx1(+)祖细胞产生很大比例的Pmch-,Nesfatin-,车-,Hcrt-,表达Agrp和ERα的神经元群体,在较小程度上,Pomc-,TH和芳香化酶表达群体。可诱导的命运映射揭示了Dbx1衍生的LH和Arc种群发育的不同时间窗口,Arc中的Agrp(+)和Cart(+)种群早期出现(E7.5-E9.5),而LH中的Pmch()和Hcrt()种群来自后来表达Dbx1的祖细胞(E9.5-E11.5)。此外,正如c-Fos标签所揭示的,男性和女性LH中的Dbx1衍生细胞,Arc和VMH在交配和侵略期间具有响应性。相比之下,Arc和LH中的Dbx1谱系细胞具有更广泛的行为调节,其中包括对禁食和捕食者气味线索的反应。
    我们针对下丘脑祖细胞区的Dbx1表达定义了下丘脑的新命运图。我们证明了以时间调节的方式,Dbx1衍生的神经元有助于LH中分子不同的神经元群体,Arc和VMH与各种下丘脑驱动的行为有关。与此一致,LH中Dbx1衍生的神经元,电弧和VMH在压力和其他先天行为反应期间被激活,暗示他们参与了这些不同的行为。
    Neurons in the hypothalamus function to regulate the state of the animal during both learned and innate behaviors, and alterations in hypothalamic development may contribute to pathological conditions such as anxiety, depression or obesity. Despite many studies of hypothalamic development and function, the link between embryonic development and innate behaviors remains unexplored. Here, focusing on the embryonically expressed homeodomain-containing gene Developing Brain Homeobox 1 (Dbx1), we explored the relationship between embryonic lineage, post-natal neuronal identity and lineage-specific responses to innate cues. We found that Dbx1 is widely expressed across multiple developing hypothalamic subdomains. Using standard and inducible fate-mapping to trace the Dbx1-derived neurons, we identified their contribution to specific neuronal subtypes across hypothalamic nuclei and further mapped their activation patterns in response to a series of well-defined innate behaviors.
    Dbx1-derived neurons occupy multiple postnatal hypothalamic nuclei including the lateral hypothalamus (LH), arcuate nucleus (Arc) and the ventral medial hypothalamus (VMH). Within these nuclei, Dbx1 (+) progenitors generate a large proportion of the Pmch-, Nesfatin-, Cart-, Hcrt-, Agrp- and ERα-expressing neuronal populations, and to a lesser extent the Pomc-, TH- and Aromatase-expressing populations. Inducible fate-mapping reveals distinct temporal windows for development of the Dbx1-derived LH and Arc populations, with Agrp(+) and Cart(+) populations in the Arc arising early (E7.5-E9.5), while Pmch(+) and Hcrt(+) populations in the LH derived from progenitors expressing Dbx1 later (E9.5-E11.5). Moreover, as revealed by c-Fos labeling, Dbx1-derived cells in male and female LH, Arc and VMH are responsive during mating and aggression. In contrast, Dbx1-lineage cells in the Arc and LH have a broader behavioral tuning, which includes responding to fasting and predator odor cues.
    We define a novel fate map of the hypothalamus with respect to Dbx1 expression in hypothalamic progenitor zones. We demonstrate that in a temporally regulated manner, Dbx1-derived neurons contribute to molecularly distinct neuronal populations in the LH, Arc and VMH that have been implicated in a variety of hypothalamic-driven behaviors. Consistent with this, Dbx1-derived neurons in the LH, Arc and VMH are activated during stress and other innate behavioral responses, implicating their involvement in these diverse behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    内耳是一个复杂的器官,由各种专门的感觉器官组成,用于检测声音和头部运动。这些感觉器官的规格时间,然而,不清楚。先前内耳的命运映射结果表明,前庭和听觉神经节以及两个前庭感觉器官,黄斑(UM)和囊状黄斑(SM),与血统有关。基于听觉和前庭神经母细胞各自从耳上皮退出的内侧-外侧关系,以及随后在这些区域形成内侧SM和外侧UM,我们假设两个横向结构的规格,前庭神经节和UM耦合,同样对于两个内侧结构,听觉神经节和SM.我们通过手术倒置卵内耳杯的主轴并研究前庭神经源性区域的命运来检验这一假设,发现了亲脂性染料。我们的结果表明,横向定位,染料相关,移植耳的前庭神经节和UM基本正常,而听觉神经节和SM均出现异常,表明移植时主要指定了外侧而非内侧衍生结构。这两个结果都与神经元和黄斑命运规范之间的时间耦合一致。
    The inner ear is a complex organ comprised of various specialized sensory organs for detecting sound and head movements. The timing of specification for these sensory organs, however, is not clear. Previous fate mapping results of the inner ear indicate that vestibular and auditory ganglia and two of the vestibular sensory organs, the utricular macula (UM) and saccular macula (SM), are lineage related. Based on the medial-lateral relationship where respective auditory and vestibular neuroblasts exit from the otic epithelium and the subsequent formation of the medial SM and lateral UM in these regions, we hypothesized that specification of the two lateral structures, the vestibular ganglion and the UM are coupled and likewise for the two medial structures, the auditory ganglion and the SM. We tested this hypothesis by surgically inverting the primary axes of the otic cup in ovo and investigating the fate of the vestibular neurogenic region, which had been spotted with a lipophilic dye. Our results showed that the laterally-positioned, dye-associated, vestibular ganglion and UM were largely normal in transplanted ears, whereas both auditory ganglion and SM showed abnormalities suggesting the lateral but not the medial-derived structures were mostly specified at the time of transplantation. Both of these results are consistent with a temporal coupling between neuronal and macular fate specifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    当前的知识表明,皮质感觉区域的身份受转录因子(TF)控制,转录因子(TF)在一步过程中指定祖细胞及其后代的区域特征。然而,神经元如何获得和维持这些特征尚不清楚。我们已经使用限制在小鼠有丝分裂后皮质神经元的条件失活来研究TFLIM同源盒2(Lhx2)在此过程中的作用,并报告说,在条件突变的皮质区域模式在祖细胞中是正常的,但在皮质板(CP)神经元中受到强烈影响。我们表明,Lhx2通过调节下游遗传和表观遗传调节因子来控制新皮质区域模式,从而驱动CP神经元分子特性的获得。我们的结果质疑祖先主导区域身份的严格层次结构,提出了一种新颖且更全面的区域图案化两步模型:在祖细胞中,图案化TFs预先指定感觉区域蓝图。按顺序,对齐TFs的持续功能,包括Lhx2,对于维护和将蓝图转换为皮层神经元的功能感觉区域特性至关重要。我们的结果再次强调了Lhx2在控制神经元主要特性中作为末端选择基因之一的关键作用。
    Current knowledge suggests that cortical sensory area identity is controlled by transcription factors (TFs) that specify area features in progenitor cells and subsequently their progeny in a one-step process. However, how neurons acquire and maintain these features is unclear. We have used conditional inactivation restricted to postmitotic cortical neurons in mice to investigate the role of the TF LIM homeobox 2 (Lhx2) in this process and report that in conditional mutant cortices area patterning is normal in progenitors but strongly affected in cortical plate (CP) neurons. We show that Lhx2 controls neocortical area patterning by regulating downstream genetic and epigenetic regulators that drive the acquisition of molecular properties in CP neurons. Our results question a strict hierarchy in which progenitors dominate area identity, suggesting a novel and more comprehensive two-step model of area patterning: In progenitors, patterning TFs prespecify sensory area blueprints. Sequentially, sustained function of alignment TFs, including Lhx2, is essential to maintain and to translate the blueprints into functional sensory area properties in cortical neurons postmitotically. Our results reemphasize critical roles for Lhx2 that acts as one of the terminal selector genes in controlling principal properties of neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    了解大脑发育仍然是理解什么使我们成为人类的核心的主要挑战。大脑皮层,在进化方面,大脑皮层的最新部分,是高级认知功能的所在地。它的正常发展需要生产,定位,以及大量兴奋性和抑制性神经元的适当互连。Pax6是一组相对较小的转录因子之一,可以高水平控制皮质发育,并且其从发育中的胚胎中突变或缺失会导致重大的大脑缺陷和广泛的神经发育障碍。Pax6在灵长类和非灵长类物种之间非常保守,在整个发育中的皮质中以梯度表达,对于正常的皮质发育至关重要。在过去的十年中,我们对Pax6的功能及其在哺乳动物皮质发育过程中调节的细胞过程的理解有了显著的进步。由于遗传和生化分析的联合应用。这里,我们回顾了Pax6在调节皮质祖细胞增殖中的功能重要性,神经发生,和皮质层的形成,突出了啮齿动物和灵长类动物之间的重要差异。我们还回顾了PAX6突变在人类神经发育障碍中的病理作用。我们讨论了Pax6分子作用的某些方面,包括其自身复杂的转录调控,其剪接变体的独特分子功能和Pax6的一些已知的直接靶标,这些靶标在皮质发育过程中介导其作用。
    Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6\'s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6\'s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6\'s known direct targets which mediate its actions during cortical development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号