neuronal diversity

  • 文章类型: Journal Article
    使用改良的高尔基体浸渍方法检查了骆驼和人类的尾状核(CN)神经元。神经元根据体细胞形态进行分类,树枝状特征,和脊柱分布。在这两个物种中都鉴定出三种初级神经元类型:多刺(I型),疏刺(II型),和有皮(III型),每个包括具有特定特征的亚型。比较分析显示,体细胞大小存在显着差异,树枝状形态,和脊柱在骆驼和人类之间的分布。该研究有助于我们对CN神经元结构多样性的理解,并提供了对进化神经适应的见解。
    Caudate nucleus (CN) neurons in camels and humans were examined using modified Golgi impregnation methods. Neurons were classified based on soma morphology, dendritic characteristics, and spine distribution. Three primary neuron types were identified in both species: rich-spiny (Type I), sparsely-spiny (Type II), and aspiny (Type III), each comprising subtypes with specific features. Comparative analysis revealed significant differences in soma size, dendritic morphology, and spine distribution between camels and humans. The study contributes to our understanding of structural diversity in CN neurons and provides insights into evolutionary neural adaptations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    张先生最近的一项研究,Pauler,Koppensteiner等人。将谱系追踪与单细胞RNA测序(scRNA-seq)相结合,揭示了发育中的上丘(SC)的意外特征。极多能的单个祖细胞产生所有类型的SC神经元和神经胶质细胞,这些细胞被发现以非预定模式定位,在SC发展中表现出显著的不可预测性。
    A recent study by Cheung, Pauler, Koppensteiner et al. combining lineage tracing with single-cell RNA sequencing (scRNA-seq) has revealed unexpected features of the developing superior colliculus (SC). Extremely multipotent individual progenitors generate all types of SC neurons and glial cells that were found to localize in a non-predetermined pattern, demonstrating a remarkable degree of unpredictability in SC development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们的大脑如何产生不同类型的神经元并组装成精确的神经回路尚不清楚。使用果蝇层神经元类型(L1-L5),我们表明,初级同源结构域转录因子(HDTF)脑特异性同源盒(Bsh)在祖细胞中启动,并在L4/L5神经元中维持到成年。Bsh激活次级HDTFAp(L4)和Pdm3(L5)并指定L4/L5神经元命运,同时抑制HDTFZfh1以防止异位L1/L3命运(对照:L1-L5;Bsh敲除:L1-L3),从而产生正常视觉敏感性的椎板神经元多样性。随后,在L4神经元中,Bsh和Ap在前馈回路中起作用,以激活突触识别分子DIP-β,从而桥接神经元命运决定与突触连接。Bsh的表达式:大坝,特别是在L4中,揭示了Bsh与DIP-β基因座和其他候选L4功能同一性基因的结合。我们建议HDTF分层功能来协调神经元分子同一性,电路形成,和功能。分层HDTF可以代表用于将神经元多样性链接到电路组装和功能的保守机制。
    How our brain generates diverse neuron types that assemble into precise neural circuits remains unclear. Using Drosophila lamina neuron types (L1-L5), we show that the primary homeodomain transcription factor (HDTF) brain-specific homeobox (Bsh) is initiated in progenitors and maintained in L4/L5 neurons to adulthood. Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates while repressing the HDTF Zfh1 to prevent ectopic L1/L3 fates (control: L1-L5; Bsh-knockdown: L1-L3), thereby generating lamina neuronal diversity for normal visual sensitivity. Subsequently, in L4 neurons, Bsh and Ap function in a feed-forward loop to activate the synapse recognition molecule DIP-β, thereby bridging neuronal fate decision to synaptic connectivity. Expression of a Bsh:Dam, specifically in L4, reveals Bsh binding to the DIP-β locus and additional candidate L4 functional identity genes. We propose that HDTFs function hierarchically to coordinate neuronal molecular identity, circuit formation, and function. Hierarchical HDTFs may represent a conserved mechanism for linking neuronal diversity to circuit assembly and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞类型的可重复定义和鉴定对于研究其生物学功能至关重要。并理解它们在发展背景下的相关性,疾病和进化。当前的方法将数据的可变性建模为连续的潜在因素,然后作为一个单独的步骤进行聚类,或立即对数据应用聚类。以这种方式获得的簇被认为是图集规模努力中的推定细胞类型,例如哺乳动物大脑的那些。我们表明,这种方法在稳健地识别细胞类型时可能会出现定性错误,特别是当这种细胞类型的数量为数百甚至数千时。这里,我们提出了一种无监督的方法,MMIDAS(离散耦合自编码器的混合模型推断),将广义混合模型与多臂深度神经网络相结合,联合推断离散型和连续型特异性变异性。我们以可应用于分析单模态和多模态数据集的方式开发此框架。使用四个最新的脑细胞数据集,跨越不同的技术,物种,和条件,我们证明了MMIDAS在推断细胞身份的可解释离散和连续表示方面显着优于最先进的模型,并发现新颖的生物学见解。因此,我们的无监督框架可以帮助研究人员识别更强大的细胞类型,研究细胞类型依赖的连续变异性,在特征域中解释这些潜在因素,并研究多模态数据集。
    Reproducible definition and identification of cell types is essential to enable investigations into their biological function, and understanding their relevance in the context of development, disease and evolution. Current approaches model variability in data as continuous latent factors, followed by clustering as a separate step, or immediately apply clustering on the data. We show that such approaches can suffer from qualitative mistakes in identifying cell types robustly, particularly when the number of such cell types is in the hundreds or even thousands. Here, we propose an unsupervised method, MMIDAS, which combines a generalized mixture model with a multi-armed deep neural network, to jointly infer the discrete type and continuous type-specific variability. Using four recent datasets of brain cells spanning different technologies, species, and conditions, we demonstrate that MMIDAS can identify reproducible cell types and infer cell type-dependent continuous variability in both uni-modal and multi-modal datasets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    异质性是生物学中的常态。大脑没有什么不同:神经元细胞类型很多,通过它们的细胞形态反映出来,type,兴奋性,连接图案,和离子通道分布。虽然这种生物物理多样性丰富了神经系统的动态库,与大脑功能随时间的稳健性和持久性(弹性)相协调仍然具有挑战性。为了更好地理解兴奋性异质性(神经元群体中兴奋性的变异性)和弹性之间的关系,我们在分析和数值上分析了一个非线性稀疏神经网络,它具有在长时间尺度上进化的平衡的兴奋性和抑制性连接。均质网络表现出兴奋性的增加,和强烈的激发率相关性-不稳定的迹象-响应缓慢变化的调制波动。通过限制对调制挑战的响应和限制激发率相关性,兴奋性异质性以上下文相关的方式调整了网络稳定性,同时丰富了低调制驱动状态下的动力学。发现兴奋性异质性可以实现一种稳态控制机制,从而增强网络对人口规模变化的抵御能力,连接概率,突触权重的强度和变异性,通过淬灭波动性(即,它对关键过渡的敏感性)。一起,这些结果强调了细胞间异质性在面对变化时脑功能的稳健性中所起的基本作用.
    Heterogeneity is the norm in biology. The brain is no different: Neuronal cell types are myriad, reflected through their cellular morphology, type, excitability, connectivity motifs, and ion channel distributions. While this biophysical diversity enriches neural systems\' dynamical repertoire, it remains challenging to reconcile with the robustness and persistence of brain function over time (resilience). To better understand the relationship between excitability heterogeneity (variability in excitability within a population of neurons) and resilience, we analyzed both analytically and numerically a nonlinear sparse neural network with balanced excitatory and inhibitory connections evolving over long time scales. Homogeneous networks demonstrated increases in excitability, and strong firing rate correlations-signs of instability-in response to a slowly varying modulatory fluctuation. Excitability heterogeneity tuned network stability in a context-dependent way by restraining responses to modulatory challenges and limiting firing rate correlations, while enriching dynamics during states of low modulatory drive. Excitability heterogeneity was found to implement a homeostatic control mechanism enhancing network resilience to changes in population size, connection probability, strength and variability of synaptic weights, by quenching the volatility (i.e., its susceptibility to critical transitions) of its dynamics. Together, these results highlight the fundamental role played by cell-to-cell heterogeneity in the robustness of brain function in the face of change.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    液体状态机(LSM)是皮质微电路的生物学上合理的模型。它是随机存在的,具有固定突触和可训练读出层的周期性连接的尖峰神经元的稀疏库。LSM具有较低的训练复杂度,并在强大的、然而简单的计算范例。在这项工作中,通过一组生物启发扩展来增强液体状态机,以创建扩展液体状态机(ELSM),在一组语音数据集上进行评估。首先,我们确保兴奋性/抑制性(E/I)平衡,以使LSM能够在混沌边缘状态下运行。其次,在LSM中引入了尖峰频率自适应(SFA)来提高存储能力。最后,神经元异质性,通过时间常数的微分,引入提取更丰富的动态LSM响应。通过包括E/I余额,SFA,和神经元异质性,我们表明,ELSM始终改进LSM,同时保留了简单的LSM结构和训练过程的好处。拟议的扩展导致准确度提高了5.2%,同时将基准语音数据集的ELSM峰值减少了20.2%。在一些基准上,ELSM甚至可以获得与当前最先进的尖峰神经网络类似的性能。此外,我们说明了ELSM输入液体和循环突触权重可以降低到4位分辨率,而分类性能没有任何显着损失。因此,我们证明了ELSM是一个强大的,生物学上合理且硬件友好的尖峰神经网络模型,可以在尖峰神经网络的语音识别基准上达到接近最先进的准确性。
    A liquid state machine (LSM) is a biologically plausible model of a cortical microcircuit. It exists of a random, sparse reservoir of recurrently connected spiking neurons with fixed synapses and a trainable readout layer. The LSM exhibits low training complexity and enables backpropagation-free learning in a powerful, yet simple computing paradigm. In this work, the liquid state machine is enhanced by a set of bio-inspired extensions to create the extended liquid state machine (ELSM), which is evaluated on a set of speech data sets. Firstly, we ensure excitatory/inhibitory (E/I) balance to enable the LSM to operate in edge-of-chaos regime. Secondly, spike-frequency adaptation (SFA) is introduced in the LSM to improve the memory capabilities. Lastly, neuronal heterogeneity, by means of a differentiation in time constants, is introduced to extract a richer dynamical LSM response. By including E/I balance, SFA, and neuronal heterogeneity, we show that the ELSM consistently improves upon the LSM while retaining the benefits of the straightforward LSM structure and training procedure. The proposed extensions led up to an 5.2% increase in accuracy while decreasing the number of spikes in the ELSM up to 20.2% on benchmark speech data sets. On some benchmarks, the ELSM can even attain similar performances as the current state-of-the-art in spiking neural networks. Furthermore, we illustrate that the ELSM input-liquid and recurrent synaptic weights can be reduced to 4-bit resolution without any significant loss in classification performance. We thus show that the ELSM is a powerful, biologically plausible and hardware-friendly spiking neural network model that can attain near state-of-the-art accuracy on speech recognition benchmarks for spiking neural networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了了解神经系统是如何在早期胚胎发育过程中从一小部分祖细胞中发展而来的,识别神经元亚型的多样性至关重要,解码神经元多样性的起源,并揭示控制不同区域神经元规范的原理。最近的单细胞分析以前所未有的规模和速度系统地识别了神经元多样性,使产生神经元多样性的时空机制的解构成为当务之急和最重要的挑战。在这次审查中,我们强调了神经祖细胞部署的三种不同的策略来产生不同的神经元亚型,包括预先确定的,随机,和级联多样化模型,并阐述这些策略是如何在不同的区域实施的,比如大脑皮层,脊髓,视网膜,还有下丘脑.重要的是,神经祖细胞的身份由它们的空间位置和时间模式因子定义,并且每种类型的祖细胞都会产生可区分的神经元亚型队列。微环境线索,自发活动,和连接模式进一步重塑和多样化非特化神经元在特定区域的命运。神经元多样性如何产生的照明将为产生特定的脑类器官铺平道路,以模拟人类疾病和细胞治疗所需的神经元亚型。以及理解功能性神经回路的组织和神经系统的进化。
    To understand how the nervous system develops from a small pool of progenitors during early embryonic development, it is fundamentally important to identify the diversity of neuronal subtypes, decode the origin of neuronal diversity, and uncover the principles governing neuronal specification across different regions. Recent single-cell analyses have systematically identified neuronal diversity at unprecedented scale and speed, leaving the deconstruction of spatiotemporal mechanisms for generating neuronal diversity an imperative and paramount challenge. In this review, we highlight three distinct strategies deployed by neural progenitors to produce diverse neuronal subtypes, including predetermined, stochastic, and cascade diversifying models, and elaborate how these strategies are implemented in distinct regions such as the neocortex, spinal cord, retina, and hypothalamus. Importantly, the identity of neural progenitors is defined by their spatial position and temporal patterning factors, and each type of progenitor cell gives rise to distinguishable cohorts of neuronal subtypes. Microenvironmental cues, spontaneous activity, and connectional pattern further reshape and diversify the fate of unspecialized neurons in particular regions. The illumination of how neuronal diversity is generated will pave the way for producing specific brain organoids to model human disease and desired neuronal subtypes for cell therapy, as well as understanding the organization of functional neural circuits and the evolution of the nervous system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    要实现脑类器官研究人类发育的全部效用,需要了解类器官是否精确复制内源性细胞和分子事件。特别是由于异常代谢状态会损害类器官中细胞身份的获取。我们提出了一个全面的单细胞转录组,表观遗传,和人类皮质类器官发育的空间图集,包括超过610,000个细胞,从神经祖细胞的产生到分化的神经元和神经胶质亚型的产生。我们表明,细胞多样化的过程与内源性的密切相关,无论代谢状态如何,授权使用此地图集来研究人类命运规范。我们定义了类器官发育过程中皮质细胞类型的纵向分子轨迹,鉴定在谱系建立中具有预测的人类特异性作用的基因,并揭示人类call骨神经元的早期转录多样性。研究结果验证了这种全面的体外人类皮质发育图集,可作为对人类皮质发育机制进行初步研究的资源。
    Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    定义神经元多样性的起源是发育神经生物学的主要挑战。果蝇视觉系统是研究细胞多样性如何产生的极好范例。来自眼盘的光感受器将轴突生长到视神经叶中并分泌Hedgehog(Hh)以诱导椎板,这样,对于每个单位眼,存在由堆叠成柱的有丝分裂后前体组成的对应的椎板单元。每个分化列包含五个椎板神经元类型(L1-L5),使它成为视叶中最简单的神经纤维,然而,这种多样性是如何产生的还不清楚。这里,我们发现Hh通路活性是沿着椎板柱的远端-近端轴分级的,并进一步确定该途径活性的梯度来自Hh配体的梯度。我们通过使Hh配体失活并在光感受器中将其击倒,在薄层前体中自主操纵细胞和非细胞中自主操纵Hh途径活性。这些操作表明,不同的活动阈值指定了独特的细胞身份,响应逐渐降低的Hh水平,指定更多的近端细胞类型。因此,我们的数据表明,Hh作为一种形态素来图案化叶片。尽管这是果蝇神经系统发育过程中的第一份此类报告,我们的工作揭示了与脊椎动物神经管的显著相似性,这是SonicHh的图案。总之,我们表明,分化神经元可以通过形态发生原梯度调节其远处靶场的神经元多样性。
    Defining the origin of neuronal diversity is a major challenge in developmental neurobiology. The Drosophila visual system is an excellent paradigm to study how cellular diversity is generated. Photoreceptors from the eye disc grow their axons into the optic lobe and secrete Hedgehog (Hh) to induce the lamina, such that for every unit eye there is a corresponding lamina unit made up of post-mitotic precursors stacked into columns. Each differentiated column contains five lamina neuron types (L1-L5), making it the simplest neuropil in the optic lobe, yet how this diversity is generated was unknown. Here, we found that Hh pathway activity is graded along the distal-proximal axis of lamina columns, and further determined that this gradient in pathway activity arises from a gradient of Hh ligand. We manipulated Hh pathway activity cell autonomously in lamina precursors and non-cell autonomously by inactivating the Hh ligand and by knocking it down in photoreceptors. These manipulations showed that different thresholds of activity specify unique cell identities, with more proximal cell types specified in response to progressively lower Hh levels. Thus, our data establish that Hh acts as a morphogen to pattern the lamina. Although this is the first such report during Drosophila nervous system development, our work uncovers a remarkable similarity with the vertebrate neural tube, which is patterned by Sonic Hh. Altogether, we show that differentiating neurons can regulate the neuronal diversity of their distant target fields through morphogen gradients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    苍蝇和哺乳动物的中枢神经系统(CNS)的发育需要在不同的位置和时间产生不同的神经元。在这里,我们回顾了果蝇干细胞(神经母细胞;NBs)如何随着时间的推移产生不同的神经元的进展。有两种类型的NB:I型和II型NB(定义如下);这里我们专注于I型NB;II型NB在本期其他地方进行了审查。I型NB通过特定时间转录因子(TTF)的级联表达产生神经多样性。TTF在成神经细胞中顺序表达,并且是在每个TTF表达窗口期间出生的神经元的身份所必需的。通过这种方式,TTF指定神经元的“时间身份”或出生顺序相关身份。最近的研究表明,TTF在神经母细胞中的表达改变了其后代的身份,包括引导运动神经元与适当的肌肉目标形成适当的连接,独立于他们的出生顺序。同样,视叶(OL)I型NB表达一系列TTF,可促进适当的神经元形态并靶向四个OL神经痛。一起,这些研究证明了时间同一性在促进果蝇中枢神经系统内正确的电路组装方面是至关重要的.此外,小鼠中的TTF直向同源物是指定新皮层和视网膜中神经元类型的良好候选者。在这篇综述中,我们重点介绍了在了解TTFs在果蝇中枢神经系统回路组装中的作用方面的最新进展,并反思了这些机制在哺乳动物中枢神经系统发育中的保守性。
    The development of the central nervous system (CNS) in flies and mammals requires the production of distinct neurons in different locations and times. Here we review progress on how Drosophila stem cells (neuroblasts; NBs) generate distinct neurons over time. There are two types of NBs: type I and type II NBs (defined below); here we focus on type I NBs; type II NBs are reviewed elsewhere in this issue. Type I NBs generate neural diversity via the cascading expression of specific temporal transcription factors (TTFs). TTFs are sequentially expressed in neuroblasts and required for the identity of neurons born during each TTF expression window. In this way TTFs specify the \"temporal identity\" or birth-order dependent identity of neurons. Recent studies have shown that TTF expression in neuroblasts alter the identity of their progeny, including directing motor neurons to form proper connectivity to the proper muscle targets, independent of their birth-order. Similarly, optic lobe (OL) type I NBs express a series of TTFs that promote proper neuron morphology and targeting to the four OL neuropils. Together, these studies demonstrate how temporal identity is crucial in promoting proper circuit assembly within the Drosophila CNS. In addition, TTF orthologs in mouse are good candidates for specifying neuron types in the neocortex and retina. In this review we highlight the recent advances in understanding the role of TTFs in CNS circuit assembly in Drosophila and reflect on the conservation of these mechanisms in mammalian CNS development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号