neural circuit dynamics

神经回路动力学
  • 文章类型: Journal Article
    前额叶皮层(PFC)电路提供对威胁反应性的自上而下的控制。这包括ventromedialPFC(vmPFC)电路,在抑制与恐惧相关的行为状态中发挥作用。强啡肽(Dyn)已涉及介导由严重威胁引起的负面影响和适应不良行为,并在边缘回路中表达,包括vmPFC。然而,在我们对vmPFCDyn表达神经元和Dyn传输如何检测威胁和调节防御行为表达的理解中,存在一个关键的知识差距。这里,我们证明了Dyn细胞被威胁广泛激活,并在vmPFC中局部释放Dyn以限制被动防御行为。我们进一步证明了vmPFCDyn介导的信号传导促进了vmPFC网络向恐惧相关状态的转换。总之,我们揭示了以前未知的vmPFCDyn神经元和Dyn神经肽能传递在通过vmPFC网络的状态驱动变化抑制威胁时的防御行为中的作用。
    Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在运动神经科学中,状态变化被假设为协调复杂运动的时间锁定神经组件,但这方面的证据依然细长。我们通过对小脑Purkinje神经元复杂尖峰进行成像,测试了从更自主到连贯尖峰的离散变化是否为熟练运动奠定了基础。当老鼠学习任务时,毫米尺度的时空相干尖峰出现在到达前肢的同侧,一致的神经同步成为运动学刻板印象的预测。在发病之前,尖峰从更无序的转变为内部时间锁定的一致尖峰和沉默。小脑对下橄榄反馈的光遗传学操纵双向调节神经同步和到达方向。一个简单的模型解释了到达过程中尖峰的重组,反映了橄榄网络动力学中的离散分叉。这些发现认为,为了准备学习的动作,橄榄-小脑回路进入自我调节,同步状态促进电机协调。促进行为转变的状态变化可以在整个神经系统中推广。
    In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物的大脑是一个紧密互连的网络,由数百万到数十亿的神经元组成。解码该神经电路如何表示和处理信息需要能够在大脑的大面积上以高速和高分辨率捕获和操纵大量群体的动态。尽管在过去的二十年中,神经科学界对光学方法的使用迅速增加,大多数显微镜方法无法以相关的时间和空间分辨率记录整个哺乳动物大脑中包含功能网络的所有神经元的活动。在这次审查中,我们调查了在这方面用于Ca2+成像的光学技术的最新发展,并概述了每种模式的优势和局限性以及其可扩展性的潜力。我们从典型生物应用和样品条件驱动的生物用户的角度提供指导。我们还讨论了通过混合方法或其他方式可以获得的未来进步和协同作用的潜力。
    The mammalian brain is a densely interconnected network that consists of millions to billions of neurons. Decoding how information is represented and processed by this neural circuitry requires the ability to capture and manipulate the dynamics of large populations at high speed and high resolution over a large area of the brain. Although the use of optical approaches by the neuroscience community has rapidly increased over the past two decades, most microscopy approaches are unable to record the activity of all neurons comprising a functional network across the mammalian brain at relevant temporal and spatial resolutions. In this review, we survey the recent development in optical technologies for Ca2+ imaging in this regard and provide an overview of the strengths and limitations of each modality and its potential for scalability. We provide guidance from the perspective of a biological user driven by the typical biological applications and sample conditions. We also discuss the potential for future advances and synergies that could be obtained through hybrid approaches or other modalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号