neocortical layer-5 pyramidal neuron

新皮质层 - 5 锥体神经元
  • 文章类型: Journal Article
    毒素AaH-II,蝎子AndroctonusaustralisHector毒液,是一种64个氨基酸的肽,其靶向电压门控Na+通道(VGNC)并减缓其失活。虽然在宏观细胞水平AaH-II延长动作电位(AP),对毒素在轴突初始片段(AIS)中的作用进行功能分析,VGNC高度表达,到目前为止从未表演过。这里,我们报告了AaH-II对小鼠脑片新皮层5锥体神经元AIS中AP生成的影响的原始分析。在确定AaH-II不区分Nav1.2和Nav1.6之后,即在该神经元中表达的两个VGNC同工型之间,我们确定7nM是最小的毒素浓度,在局部递送毒素后产生最小的可检测的体细胞AP变形。使用膜电位成像,我们发现,在这个最低浓度下,AaH-II大幅扩大了AIS中的AP。使用超快Na+成像,我们发现,局部应用7nMAaH-II会导致AIS中Na内流的较慢成分大量增加。最后,使用超快Ca2+成像,我们观察到7nMAaH-II通过可透Ca2+的VGNC产生虚假的缓慢Ca2+流入。靶向VGNC的分子,包括肽,被提议作为潜在的治疗工具。因此,AIS中的当前分析可以被认为是高分辨率成像技术如何揭示在宏观水平上无法观察到的药物作用的一般原理证明.
    The toxin AaH-II, from the scorpion Androctonus australis Hector venom, is a 64 amino acid peptide that targets voltage-gated Na+ channels (VGNCs) and slows their inactivation. While at macroscopic cellular level AaH-II prolongs the action potential (AP), a functional analysis of the effect of the toxin in the axon initial segment (AIS), where VGNCs are highly expressed, was never performed so far. Here, we report an original analysis of the effect of AaH-II on the AP generation in the AIS of neocortical layer-5 pyramidal neurons from mouse brain slices. After determining that AaH-II does not discriminate between Nav1.2 and Nav1.6, i.e. between the two VGNC isoforms expressed in this neuron, we established that 7 nM was the smallest toxin concentration producing a minimal detectable deformation of the somatic AP after local delivery of the toxin. Using membrane potential imaging, we found that, at this minimal concentration, AaH-II substantially widened the AP in the AIS. Using ultrafast Na+ imaging, we found that local application of 7 nM AaH-II caused a large increase in the slower component of the Na+ influx in the AIS. Finally, using ultrafast Ca2+ imaging, we observed that 7 nM AaH-II produces a spurious slow Ca2+ influx via Ca2+-permeable VGNCs. Molecules targeting VGNCs, including peptides, are proposed as potential therapeutic tools. Thus, the present analysis in the AIS can be considered a general proof-of-principle on how high-resolution imaging techniques can disclose drug effects that cannot be observed when tested at the macroscopic level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从轴突/体细胞到树突的动作电位(AP)的反向传播在树突整合中起着核心作用。这个过程涉及各种离子通道的复杂编排,但是对每个频道类型的贡献的全面了解仍然难以捉摸。在这项研究中,我们利用超快膜电位记录(Vm)和Ca2成像技术来揭示N型电压门控Ca2通道(VGCC)在5层新皮质锥体神经元\'顶端树突中的参与。我们发现N型VGCC与大电导Ca2激活的K通道(BKCAKCs)之间存在选择性相互作用。值得注意的是,我们观察到BKCAKCs在AP峰值后的仅500μs内被激活,在AP触发的Ca2+电流的峰值之前。因此,当N型VGCC被抑制时,AP形状的早期扩大放大了其他VGCC的活性,导致总Ca2+流入增加。一个神经元模型,为了复制和支持这些实验结果,揭示了N型和BK通道之间的临界耦合。这项研究不仅重新定义了N型VGCCs主要参与突触前神经递质释放的常规作用,而且还确立了它们作为神经元树突中BKCAKCs激活剂的独特而重要的功能。此外,我们的结果提供了Ca2+和K+通道之间物理相互作用的原始功能验证,通过超快动力学重建阐明。这种见解增强了我们对控制神经元信号传导的复杂机制的理解,并可能在该领域具有深远的意义。
    The back-propagation of an action potential (AP) from the axon/soma to the dendrites plays a central role in dendritic integration. This process involves an intricate orchestration of various ion channels, but a comprehensive understanding of the contribution of each channel type remains elusive. In this study, we leverage ultrafast membrane potential recordings (Vm) and Ca2+ imaging techniques to shed light on the involvement of N-type voltage-gated Ca2+ channels (VGCCs) in layer-5 neocortical pyramidal neurons\' apical dendrites. We found a selective interaction between N-type VGCCs and large-conductance Ca2+-activated K+ channels (BK CAKCs). Remarkably, we observe that BK CAKCs are activated within a mere 500 μs after the AP peak, preceding the peak of the Ca2+ current triggered by the AP. Consequently, when N-type VGCCs are inhibited, the early broadening of the AP shape amplifies the activity of other VGCCs, leading to an augmented total Ca2+ influx. A NEURON model, constructed to replicate and support these experimental results, reveals the critical coupling between N-type and BK channels. This study not only redefines the conventional role of N-type VGCCs as primarily involved in presynaptic neurotransmitter release but also establishes their distinct and essential function as activators of BK CAKCs in neuronal dendrites. Furthermore, our results provide original functional validation of a physical interaction between Ca2+ and K+ channels, elucidated through ultrafast kinetic reconstruction. This insight enhances our understanding of the intricate mechanisms governing neuronal signaling and may have far-reaching implications in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在新皮质层-5锥体神经元中,当膜电位(Vm)达到电压门控Na通道(VGNC)Nav1.2和Nav1.6激活的阈值时,在轴突初始片段(AIS)中产生动作电位(AP)。然而,尽管已知这些VGNC在AIS的空间分布和生物物理特性上有所不同,对两种渠道之间功能差异的理解仍然难以捉摸。这里,使用超快Na+,Vm和Ca2+成像结合肽G1G4-huwentoxin-IV部分阻断Nav1.2,我们展示了Nav1.2在塑造生成AP方面的独家作用。准确地说,我们显示,Nav1.2的选择性阻断〜30%加宽AIS远端部分的AP,并且我们证明这种效应是由于BKCa2激活的K通道(CAKCs)的激活丧失。的确,通过Nav1.2流入的Ca2会激活BKCAKCs,从而确定AIS中AP的振幅和复极化的早期阶段。通过使用4,9-脱水河豚毒素的对照实验,这是Nav1.6的中等选择性抑制剂,我们得出结论,形成AP早期阶段的Ca2流入不包括Nav1.2。因此,我们用神经元模型模拟了这个结果,其中测试的不同离子通道的作用再现了实验证据。本文报道的Nav1.2的独特作用对于理解神经元兴奋性的生理学和病理学很重要。关键点:我们使用超快成像技术光学分析了小鼠5层新皮质锥体神经元轴突初始部分产生的动作电位及其相关的Na+和Ca2+电流。我们发现,由最近开发的肽产生的电压门控Na通道Nav1.2的部分选择性阻断,扩展轴突初始段远端部分的动作电位的形状。我们证明了这种作用是由于通过Nav1.2的Ca2流入减少,从而激活了BKCa2激活的K通道。为了验证我们的结论,我们生成了一个神经元模型,它再现了我们实验结果的集合。目前的结果表明,Nav1.2在轴突初始段中对动作电位的形成具有特定的作用。摘要图例在新皮质锥体神经元的轴突初始部分,电压门控Na通道Nav1.2通过提供Na电流和Ca2电流来激活BKCa2激活的K通道,从而形成动作电位的动力学。本文受版权保护。保留所有权利。
    In neocortical layer-5 pyramidal neurons, the action potential (AP) is generated in the axon initial segment (AIS) when the membrane potential (Vm ) reaches the threshold for activation of the voltage-gated Na+ channels (VGNCs) Nav 1.2 and Nav 1.6. Yet, whereas these VGNCs are known to differ in spatial distribution along the AIS and in biophysical properties, our understanding of the functional differences between the two channels remains elusive. Here, using ultrafast Na+ , Vm and Ca2+ imaging in combination with partial block of Nav 1.2 by the peptide G1 G4 -huwentoxin-IV, we demonstrate an exclusive role of Nav 1.2 in shaping the generating AP. Precisely, we show that selective block of ∼30% of Nav 1.2 widens the AP in the distal part of the AIS and we demonstrate that this effect is due to a loss of activation of BK Ca2+ -activated K+ channels (CAKCs). Indeed, Ca2+ influx via Nav 1.2 activates BK CAKCs, determining the amplitude and the early phase of repolarization of the AP in the AIS. By using control experiments using 4,9-anhydrotetrodotoxin, a moderately selective inhibitor of Nav 1.6, we concluded that the Ca2+ influx shaping the early phase of the AP is exclusive of Nav 1.2. Hence, we mimicked this result with a neuron model in which the role of the different ion channels tested reproduced the experimental evidence. The exclusive role of Nav 1.2 reported here is important for understanding the physiology and pathology of neuronal excitability. KEY POINTS: We optically analysed the action potential generated in the axon initial segment of mouse layer-5 neocortical pyramidal neurons and its associated Na+ and Ca2+ currents using ultrafast imaging techniques. We found that partial selective block of the voltage-gated Na+ channel Nav 1.2, produced by a recently developed peptide, widens the shape of the action potential in the distal part of the axon initial segment. We demonstrate that this effect is due to a reduction of the Ca2+ influx through Nav 1.2 that activates BK Ca2+ -activated K+ channels. To validate our conclusions, we generated a neuron model that reproduces the ensemble of our experimental results. The present results indicate a specific role of Nav 1.2 in the axon initial segment for shaping of the action potential during its generation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号