nanoparticle assembly

纳米粒子组装
  • 文章类型: Journal Article
    开发一种快速的碳纤维(CF)表面改性方法,特别是用于高强度电磁波(EMW)吸收材料。在这里,通过快速环境微波碳热冲击(MCTS),成功合成了磁性CoOx纳米颗粒,并在具有高含氧基团的CF表面上均匀组装。CF表面上氧缺陷位点的存在促进CoOx纳米颗粒成核。CF表面上的氧缺陷数量和磁性纳米颗粒的类型有效地调节了CF的表面化学活性和电磁性质,有利于提高CoOx纳米粒子改性CF增强聚酰胺6(CO@CF/PA6)复合材料的EMW吸收性能和界面相容性。与CO@CF-0s/PA6相比,CO@CF-3.5s/PA6复合材料的拉伸强度和模量分别提高了18.1%和18.6%,分别。在厚度为1.9mm的较薄的情况下,它还显示出最小反射损耗值(-59.9dB),而在厚度为1.8mm的情况下,最大有效吸收带宽达到5.02GHz。在所有测试的检测角度下,其雷达横截面值均小于-10dBm2。这种快速的MCTS显示出低成本大规模生产CF改性的巨大潜力,高效和环保的过程。
    It is a significant challenge to develop a fast carbon fiber (CF) surface modification method, especially for the high strength electromagnetic wave (EMW) absorption materials. Herein, magnetic CoOx nanoparticles are successfully synthesized and uniformly assembled on CF surface with high oxygen-containing groups by rapid ambient microwave carbon thermal shock (MCTS). The presence of oxygen defect sites on CF surface promotes CoOx nanoparticles nucleation. The number of oxygen defects and the types of magnetic nanoparticles on the CF surface effectively adjust the surface chemical activity and the electromagnetic properties of CF, which is conducive to improving the EMW absorption performance and interface compatibility of the CoOx nanoparticles modified CF reinforced polyamide 6 (CO@CF/PA6) composites. Compared with CO@CF-0 s/PA6, the tensile strength and modulus of CO@CF-3.5 s/PA6 composite are increased by 18.1 % and 18.6 %, respectively. It also displays a minimum reflection loss value (-59.9 dB) at a thinner thickness of 1.9 mm while the maximum effective absorption bandwidth reaches 5.02 GHz with a thickness of 1.8 mm. Its radar cross-section values exhibit less than -10 dBm2 at all tested detection angles. This rapid MCTS shows great potential for large-scale production of CF modification with low-cost, efficient and environmentally friendly process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大小依赖性吞噬作用是单核细胞和巨噬细胞中充分表征的现象。然而,这种优先基因递送到这些重要细胞靶标的大小效应尚未得到充分利用,因为静电复合核酸纳米颗粒通常采用的稳定方法,如聚乙二醇化和电荷排斥,通常将车辆尺寸限制在200nm以下。这里,我们通过带电纳米粒子的静电自组装来弥合可扩展合成较大亚微米基因载体的技术差距,由结构上设计用于调节纳米粒子间库仑力和范德华力的聚合物促进。具体来说,我们的策略允许将小的聚(β-氨基酯)/信使核糖核酸(mRNA)纳米颗粒受控组装成颗粒,其大小在200至1,000nm之间动力学可调,在生理介质中具有高胶体稳定性。我们发现,平均尺寸为400nm的组装颗粒在静脉内给药后最安全,最有效地转染单核细胞,并介导其分化为外周巨噬细胞。当CpG佐剂与抗原mRNA共同加载到颗粒中时,单核细胞分化成炎性树突状细胞,并在肿瘤引流淋巴结中引发适应性抗癌免疫。这种平台技术提供了一个独特的配体无关,颗粒大小介导的优先mRNA递送策略,并通过单核细胞编程实现治疗范例。
    Size-dependent phagocytosis is a well-characterized phenomenon in monocytes and macrophages. However, this size effect for preferential gene delivery to these important cell targets has not been fully exploited because commonly adopted stabilization methods for electrostatically complexed nucleic acid nanoparticles, such as PEGylation and charge repulsion, typically arrest the vehicle size below 200 nm. Here, we bridge the technical gap in scalable synthesis of larger submicron gene delivery vehicles by electrostatic self-assembly of charged nanoparticles, facilitated by a polymer structurally designed to modulate internanoparticle Coulombic and van der Waals forces. Specifically, our strategy permits controlled assembly of small poly(β-amino ester)/messenger ribonucleic acid (mRNA) nanoparticles into particles with a size that is kinetically tunable between 200 and 1,000 nm with high colloidal stability in physiological media. We found that assembled particles with an average size of 400 nm safely and most efficiently transfect monocytes following intravenous administration and mediate their differentiation into macrophages in the periphery. When a CpG adjuvant is co-loaded into the particles with an antigen mRNA, the monocytes differentiate into inflammatory dendritic cells and prime adaptive anticancer immunity in the tumor-draining lymph node. This platform technology offers a unique ligand-independent, particle-size-mediated strategy for preferential mRNA delivery and enables therapeutic paradigms via monocyte programming.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在水-油界面处组装的纳米颗粒表面活性剂可以显着降低界面张力并且可以用于稳定液体。了解并积极调整产生的膜的机械性能,其中包括纳米粒子表面活性剂,对纳米颗粒的界面行为和水净化具有重要的基本意义,药物封装,提高石油采收率,和创新的能量转换应用。这里,我们介绍了静电相互作用驱动的直径最大为0.10mm的独立式和紧密堆积的SiO2表面活性剂膜的制造。厚度为20-30nm的膜跨越直径为2μm的孔,表现出的杨氏模量范围从1.5到5.9GPa。发现制造的纳米颗粒表面活性剂膜的可控弹性特性由纳米颗粒和配体之间的相互作用强度决定,在配体和配体之间,和纳米颗粒表面活性剂之间。结果为制造和开发基于纳米表面活性剂的大面积纳米粒子提供了一种有效的方法,独立式,以及具有大规模精细可调机械性能的超薄膜。
    Nanoparticle surfactants assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Understanding and actively tuning the mechanical properties of the generated membranes, which comprise the nanoparticle surfactants, are of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we present electrostatic interaction-driven fabrication of freestanding and close-packed SiO2 surfactant membranes with diameters up to 0.10 mm. The membranes of 20-30 nm in thickness were spanned over holes with a diameter of 2 μm, exhibiting a Young\'s modulus ranging from 1.5 to 5.9 GPa. The controllable elastic properties of the fabricated nanoparticle surfactant membranes are found to be dictated by the strength of interactions between nanoparticles and ligands, between ligands and ligands, and between the nanoparticle surfactants. The results present an efficient approach for fabricating and developing nanoparticle surfactant-based large-area, freestanding, and ultrathin membranes with finely tunable mechanical properties on a large scale.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于将纳米颗粒集合体沉积为固体基底上的限定图案的常规基于模板的方法的局限性要求开发不需要模板或光刻掩模的技术。使用光学诱导的热梯度驱动胶体朝向或远离激光光斑的迁移,称为光热电泳,已显示出各种胶体物种的低功率捕获和光学操纵的希望。然而,迄今为止,使用这种技术的胶体印刷尚未建立。在这里,一种光学导向印刷贵金属纳米粒子的方法,特别是金纳米球的报道。聚合物聚乙烯吡咯烷酮和金纳米球朝向激光点的热泳导致纳米颗粒聚集体的沉积,能够用作表面增强拉曼散射基底。加热激光功率和聚合物浓度的影响,盐,和表面活性剂对纳米粒子沉积速率和结构的印刷图案进行了研究,表明各种条件都可以允许印刷,暗示了对不同纳米颗粒成分的简单概括,尺寸,和形状。这些发现将极大地有利于未来的努力定向纳米粒子组装,并驱动传感应用,光热加热,以及在生物医学和设备中的相关应用。
    The limitations of conventional template-based methods for the deposition of nanoparticle assemblies into defined patterns on solid substrates call for the development of techniques that do not require templates or lithographic masks. The use of optically-induced thermal gradients to drive the migration of colloids toward or away from a laser spot, known as opto-thermophoresis, has shown promise for the low-power trapping and optical manipulation of a variety of colloidal species. However, the printing of colloids using this technique has so far not been established. Herein, a method for the optically directed printing of noble metal nanoparticles, specifically gold nanospheres is reported. The thermophoresis of the polymer polyvinylpyrrolidone and gold nanospheres toward a laser spot led to the deposition of nanoparticle aggregates, capable of serving as surface-enhanced Raman scattering substrates. The influence of heating laser power and the concentrations of polymer, salt, and surfactant on the nanoparticle deposition rate and structure of the printed pattern are studied, showing that a variety of conditions can permit printing, suggesting facile generalization to different nanoparticle compositions, sizes, and shapes. These findings will greatly benefit future efforts for directed nanoparticle assembly, and drive applications in sensing, photothermal heating, and relevant applications in biomedicine and devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性在自然界中无处不在,与生物现象密切相关。源自自然的纳米材料,例如纤维素纳米晶体(CNCs)能够自组装成分层的手性向列型CNC膜,并赋予纳米和微米级的手性。然而,手性向列表面对细胞粘附的影响尚不清楚。在这里,我们提供的证据表明,与随机排列的各向同性CNC膜(I-CNC)相比,左手自组装的手性向列型CNC膜(L-CNC)显着改善了L929成纤维细胞的粘附。引入基于流体力显微镜(FluidFM)的单细胞力谱(SCFS)来评估L-CNC和I-CNC基底上的细胞粘附力,分别。使用这种方法,在L-CNC上培养24小时后,成熟L929成纤维细胞的最大粘附力为133.2nN,而L929成纤维细胞在相同条件下对I-CNC施加的最大粘附力为78.4nN。此外,瞬时单细胞力谱表明,细胞粘附力的这种差异在细胞粘附的早期阶段上升,L929成纤维细胞与L-CNC或I-CNC基底接触5s内。有趣的是,用RGD肽阻断跨膜整合素后,细胞粘附力的差异消失,表明整合素途径参与感测基底表面的手性。此外,免疫荧光染色和粘着斑蛋白的Westernblot分析表明,L-CNC底物上的talin表达和F-actin组装上调,而Y397-磷酸化粘着斑激酶(FAKY397)的表达无统计学差异,维古林,和α-肌动蛋白。我们的发现表明,talin的上调是促进细胞在L-CNC膜上粘附的关键因素。总的来说,这项工作提供了一个起点,通过自组装的纳米和微结构的手性向列型数控膜细胞粘附的调控,在组织工程和再生医学中具有潜在的实际应用。本文受版权保护。保留所有权利。
    Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown. Herein, this work presents evidence that the left-handed self-assembled chiral nematic CNC films (L-CNC) significantly improve the adhesion of L929 fibroblasts compared to randomly arranged isotropic CNC films (I-CNC). The fluidic force microscopy-based single-cell force spectroscopy is introduced to assess the cell adhesion forces on the substrates of L-CNC and I-CNC, respectively. With this method, a maximum adhesion force of 133.2 nN is quantified for mature L929 fibroblasts after culturing for 24 h on L-CNC, whereas the L929 fibroblasts exert a maximum adhesion force of 78.4 nN on I-CNC under the same condition. Moreover, the instant SCFS reveals that the integrin pathways are involved in sensing the chirality of substrate surfaces. Overall, this work offers a starting point for the regulation of cell adhesion via the self-assembled nano and micro architecture of chiral nematic CNC films, with potential practical applications in tissue engineering and regenerative medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高精度,可控,将纳米颗粒大规模组装成复杂的结构或器件在各个领域的应用中具有巨大的重要性,但它仍然具有挑战性。这里提出了一种高度可控和可逆的胶体CsPbBr3纳米棒的活性组装,由外部电场驱动。这种方法使纳米棒能够动态定向,组装成链条,聚合成列,并最终形成一个有序的列数组,在100kHz时,电场强度从0到50Vµm-1不等。列内的纳米棒平行于电场排列,导致一个有序的结构。通过对纳米棒之间相互作用的分析,提出了对装配体的定量解释。还引入了蒙特卡罗计算来模拟组装过程,结果证明与实验观察结果非常吻合。这种电场驱动的组件提供了一个令人兴奋的机会,为基于发达的胶体纳米粒子的下一代传感器和光子器件铺平道路。
    High-precision, controllable, mass-producible assembly of nanoparticles into complex structures or devices holds immense importance in the application across various fields but it remains challenging. Here a highly controllable and reversible active assembly of colloidal CsPbBr3 nanorods, driven by an external electric field is achieved. This approach enables the nanorods dynamically orient themselves, assemble into chains, aggregate into columns, and eventually form an ordered column array, with the electric field intensity varying from 0 to 50 V µm-1 at 100 kHz. The nanorods inside the columns align parallel to the electric field, leading to a well-ordered structure. With the analysis of the interactions among the nanorods, a quantitative interpretation of the assembly is proposed. Monte Carlo calculation is also introduced to simulate the assembly process and the results prove to be in great agreement with the experimental observations. This electric field-driven assembly presents an exciting opportunity to pave the way for next-generation sensors and photonic devices based on well-developed colloidal nanoparticles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    物联网(IoT)技术的进步推动了对小型化电子设备的需求,促进对小规模储能系统的研究。微型超级电容器(MSC)由于其紧凑的尺寸而在这方面脱颖而出,高功率密度,高充放电速率,和延长循环寿命。然而,它们有限的能量密度阻碍了商业化。要解决此问题,本文报道了一种简单且创新的方法,用于制造与通过介电泳(DEP)驱动的金纳米颗粒(AuNP)组装形成的纳米多孔金属微线集成的高效片上MSC。将水基AuNP悬浮液放置在叉指状电极上并施加交流电压会在电极间隙中引起平面内多孔微丝的形成。可以通过控制施加的交流电压和频率来调节DEP诱导的AuNP组装和金微丝(AuMW)生长速率。集成了微线的MSC(AuMW-MSC)的电性能优于其未经修改的对应物,并表现出30%的电极面积更大,以及72%和78%的比电容和面积电容,分别,比没有微线的MSC.此外,AuMW-MSC实现了3.33µWhcm-2和2629µWcm-2的最大能量和功率密度,分别,用凝胶电解质。这些发现可以帮助将MSC升级为小型电子设备的有效储能设备。
    Advances in the Internet of Things (IoT) technology have driven the demand for miniaturized electronic devices, prompting research on small-scale energy-storage systems. Micro-supercapacitors (MSCs) stand out in this regard because of their compact size, high power density, high charge-discharge rate, and extended cycle life. However, their limited energy density impedes commercialization. To resolve this issue, a simple and innovative approach is reported herein for fabricating highly efficient on-chip MSCs integrated with nanoporous metal microwires formed by dielectrophoresis (DEP)-driven gold nanoparticle (AuNP) assembly. Placing a water-based AuNP suspension onto interdigitated electrodes and applying an alternating voltage induces in-plane porous microwire formation in the electrode gap. The DEP-induced AuNP assembly and the gold microwire (AuMW) growth rate can be adjusted by controlling the applied alternating voltage and frequency. The microwire-integrated MSC (AuMW-MSC) electrically outperforms its unmodified counterpart and exhibits a 30% larger electrode area, along with 72% and 78% higher specific and areal capacitances, respectively, than a microwire-free MSC. Additionally, AuMW-MSC achieves maximum energy and power densities of 3.33 µWh cm-2 and 2629 µW cm-2, respectively, with a gel electrolyte. These findings can help upgrade MSCs to function as potent energy-storage devices for small electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过分子单层对金属表面进行功能化是纳米光子学或生物技术等领域的关键过程。为了强烈增强这种单层中的光-物质相互作用,可以通过将金属纳米颗粒放置在这样的化学官能化的金属单层上来形成镜面纳米颗粒(NPoM)腔。在这项工作中,我们提出了使用5-氨基-2-巯基苯并咪唑(5-A-2MBI)分子的金表面的新型官能化过程,可用于从THz到可见频率的上变频。合成的表面和NPoM腔通过拉曼光谱表征,原子力显微镜(AFM),和前进-后退接触角测量。此外,我们表明,NPoM腔可以有效地集成在硅基光子芯片上,通过氮化硅波导执行泵浦注入和拉曼信号提取。我们的结果为在不同应用中使用5-A-2MBI单层开辟了道路,表明NPoM腔可以有效地与光子波导集成,使片上增强拉曼光谱或检测红外和太赫兹辐射。
    Functionalization of metallic surfaces by molecular monolayers is a key process in fields such as nanophotonics or biotechnology. To strongly enhance light-matter interaction in such monolayers, nanoparticle-on-a-mirror (NPoM) cavities can be formed by placing metal nanoparticles on such chemically functionalized metallic monolayers. In this work, we present a novel functionalization process of gold surfaces using 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules, which can be used for upconversion from THz to visible frequencies. The synthesized surfaces and NPoM cavities are characterized by Raman spectroscopy, atomic force microscopy (AFM), and advancing-receding contact angle measurements. Moreover, we show that NPoM cavities can be efficiently integrated on a silicon-based photonic chip performing pump injection and Raman-signal extraction via silicon nitride waveguides. Our results open the way for the use of 5-A-2MBI monolayers in different applications, showing that NPoM cavities can be effectively integrated with photonic waveguides, enabling on-chip enhanced Raman spectroscopy or detection of infrared and THz radiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分区是将具有不同功能的多尺度组件集成到微型体系结构中的强大概念。灵感来自进化优化的细胞区室,合成的核-壳胶囊能够储存活性物质并按需提供编程功能,推动各个领域的科学进步,包括自适应材料,可持续电子,软机器人,精准医学。为了同时最大限度地提高结构稳定性和环境敏感性,这是决定性能的两个最关键的特征,不同的纳米粒子被掺入到具有致密壳和液核的微胶囊中。最近的研究表明,这些纳米添加剂不仅增强了胶囊的固有特性,包括机械坚固性,光学行为,和导热性,而且还赋予动态功能,如触发释放,可变形结构,和推动流动性。在这次审查中,详细研究了在微囊化过程中控制纳米颗粒组装的物理化学原理,并概述了结构控制的功能。通过分析每种主要方法如何将纳米颗粒植入微胶囊中,突出了它们在核壳结构中独特的空间组织。在详细讨论了特定纳米粒子启用的专用功能之后,概述了这类微载体实现其潜力所需的基本见解和实验研究的愿景。
    Compartmentalization is a powerful concept to integrate multiscale components with diverse functionalities into miniature architectures. Inspired by evolution-optimized cell compartments, synthetic core-shell capsules enable storage of actives and on-demand delivery of programmed functions, driving scientific progress across various fields including adaptive materials, sustainable electronics, soft robotics, and precision medicine. To simultaneously maximize structural stability and environmental sensitivity, which are the two most critical characteristics dictating performance, diverse nanoparticles are incorporated into microcapsules with a dense shell and a liquid core. Recent studies have revealed that these nano-additives not only enhance the intrinsic properties of capsules including mechanical robustness, optical behaviors, and thermal conductivity, but also empower dynamic features such as triggered release, deformable structures, and fueled mobility. In this review, the physicochemical principles that govern nanoparticle assembly during microencapsulation are examined in detail and the architecture-controlled functionalities are outlined. Through the analysis of how each primary method implants nanoparticles into microcapsules, their distinct spatial organizations within the core-shell structures are highlighted. Following a detailed discussion of the specialized functions enabled by specific nanoparticles, the vision of the required fundamental insights and experimental studies for this class of microcarriers to fulfill its potential are sketched.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新出现的传染病的爆发引起了对可靠的即时检测方法的需求,以诊断和管理这些疾病的早期发作。然而,目前的现场测试方法,包括侧流免疫测定法(LFIA),由于灵敏度低,导致诊断结果不准确.在这里,我们介绍了基于表面增强拉曼散射的侧流免疫分析(SERS-LFIA),通过引入噬菌体模板的分层等离子体组装(PHPA)纳米探针来诊断传染病。使用组装在噬菌体MS2上的金纳米颗粒(AuNP)制造PHPA,其中颗粒间间隙大小可以通过MS2外壳蛋白的pH诱导的形态改变来调节,以通过等离子体耦合提供最大的SERS扩增效率。基于PHPA的等离子体探针产生强且可再现的SERS信号,其在SERS-LFIA中导致灵敏且可靠的诊断结果。开发的SERS-LFIA靶向严重急性呼吸综合征-冠状病毒2(SARS-CoV-2)抗体用于概念验证,在血清中具有<100pg/mL的检测限,具有高特异性,证明它是一种有效的传染病诊断设备。使用人血清样本的临床验证进一步证实,基于PHPA的SERS-LFIA可以显著准确地将COVID-19患者与健康对照区分开来。这些结果证明,开发的SERS-LFIA生物传感器可以作为针对新出现的传染病的替代即时测试(POCT)方法,与市售的便携式拉曼设备相结合。
    The outbreak of emerging infectious diseases gave rise to the demand for reliable point-of-care testing methods to diagnose and manage those diseases in early onset. However, the current on-site testing methods including lateral flow immunoassay (LFIA) suffer from the inaccurate diagnostic result due to the low sensitivity. Herein, we present the surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) by introducing phage-templated hierarchical plasmonic assembly (PHPA) nanoprobes to diagnose a contagious disease. The PHPA was fabricated using gold nanoparticles (AuNPs) assembled on bacteriophage MS2, where inter-particle gap sizes can be adjusted by pH-induced morphological alteration of MS2 coat proteins to provide the maximum SERS amplification efficiency via plasmon coupling. The plasmonic probes based on the PHPA produce strong and reproducible SERS signal that leads to sensitive and reliable diagnostic results in SERS-LFIA. The developed SERS-LFIA targeting severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) antibodies for a proof of concept had <100 pg/mL detection limits with high specificity in serum, proving it as an effective diagnostic device for the infectious diseases. Clinical validation using human serum samples further confirmed that the PHPA-based SERS-LFIA can distinguish the patients with COVID-19 from healthy controls with significant accuracy. These outcomes prove that the developed SERS-LFIA biosensor can be an alternative point-of-care testing (POCT) method against the emerging infectious diseases, in combination with the commercially available portable Raman devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号