myotubularin

肌管蛋白
  • 文章类型: Journal Article
    肌管蛋白家族,包括肌管蛋白1(MTM1)和14种肌管蛋白相关蛋白(MTMR),代表以蛋白酪氨酸磷酸酶结构域为特征的磷酸酶的保守组。9个成员的特征是活性磷酸酶结构域C(X)5R,对PtdIns(3)P和PtdIns(3,5)P2的D3位置进行去磷酸化。肌管蛋白基因突变导致人类病理肌病,和几种神经病,包括X连锁肌管肌病和Charcot-Marie-Tooth4B型。MTM1,MTMR6和MTMR14的影响有助于Ca2信号传导和Ca2稳态,这是许多MTM依赖性肌病和神经病变的关键贡献者。在这里,我们探讨了MTM1/MTMR的不断演变的作用,揭示了它们对Ca2+信号通路关键方面的影响。
    The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    K-RAS效应子(如B-RAF或MEK1/2)的抑制伴随着癌症患者通过PI3K和Wnt信号的再激活的治疗抗性。我们假设肌管蛋白相关蛋白7(MTMR7),抑制RAS下游的PI3K和ERK1/2信号传导,直接针对RAS,从而防止阻力。利用细胞和结构生物学结合动物研究,我们显示MTMR7结合并抑制细胞膜上的RAS.MTMR7的过表达降低了RASGTPase活性和蛋白质水平,ERK1/2磷酸化,c-FOS转录与体外癌细胞增殖。我们将MTMR7的RAS抑制活性定位到其带电的卷曲螺旋(CC)区域,并证明了与胃肠道癌症相关的K-RASG12V突变体的直接相互作用,有利于其GDP约束状态。在胃癌和肠癌的小鼠模型中,细胞通透性MTMR7-CC模拟肽降低肿瘤生长,Ki67增殖指数和ERK1/2核阳性。因此,MTMR7模拟肽可以提供用于在癌症中靶向突变K-RAS的新策略。
    Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes. Overexpression of MTMR7 reduced RAS GTPase activities and protein levels, ERK1/2 phosphorylation, c-FOS transcription and cancer cell proliferation in vitro. We located the RAS-inhibitory activity of MTMR7 to its charged coiled coil (CC) region and demonstrate direct interaction with the gastrointestinal cancer-relevant K-RASG12V mutant, favouring its GDP-bound state. In mouse models of gastric and intestinal cancer, a cell-permeable MTMR7-CC mimicry peptide decreased tumour growth, Ki67 proliferation index and ERK1/2 nuclear positivity. Thus, MTMR7 mimicry peptide(s) could provide a novel strategy for targeting mutant K-RAS in cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:X连锁肌管肌病(XLMTM)是一种罕见的先天性肌病,由MTM1基因编码的肌管蛋白的功能障碍引起。XLMTM由于严重的肌病表型和呼吸衰竭而具有较高的新生儿和婴儿死亡率。然而,在少数XLMTM病例中,患者表现为较温和的表型,并实现下床活动和成年期。还存在明显的面部畸形。
    方法:我们调查了患者队列中新诊断的XLMTM患者的基因型-表型相关性(以前发表的数据加上三个新变体,n=414)。基于XLMTM患者和未受影响的对照组之间的面部完形差异,我们调查了Face2Gene应用程序的使用。
    结果:严重表型与截短变异之间存在显著关联(p<0.001),移码变体(p<0.001),无义变体(p=0.006),和in/del变体(p=0.036)存在。错义变异与轻度和中度表型显著相关(p<0.001)。Face2Gene应用显示XLMTM患者和未受影响的对照组之间存在显着差异(p=0.001)。
    结论:使用基因型-表型相关性可以预测大多数XLMTM患者的病程,但仍有局限性。Face2Gene应用程序似乎是一个实用的,使用正确算法的XLMTM无创诊断方法。
    X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present.
    We investigated the genotype-phenotype correlations in newly diagnosed XLMTM patients in a patients\' cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application.
    Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001).
    Using genotype-phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    溶酶体通过介导合成代谢生长信号和大分子的分解代谢周转在细胞中发挥双重拮抗功能。人们对这些面对janus的活动如何响应细胞营养状况进行调节知之甚少。我们在这里表明,溶酶体的形态和功能是由营养调节的信号脂质开关可逆地控制的,该开关触发外周活动mTOR复合物1(mTORC1)信号活性和静态mTORC1非活性降解溶酶体之间的转化,这些溶酶体聚集在细胞中心。饥饿触发的磷脂酰肌醇4-磷酸(PI(4)P)代谢酶的重新定位重塑溶酶体表面蛋白质组以促进溶酶体蛋白水解并抑制mTORC1信号传导。同时,溶酶体磷脂酰肌醇3-磷酸(PI(3)P),这标志着细胞外围的能动信号活性溶酶体,已擦除。对该PI(3)P/PI(4)P脂质转换模块的干扰会损害细胞对改变营养供应的适应性反应。我们的数据揭示了溶酶体磷酸肌醇代谢在响应细胞营养状况而重新连接细胞膜动力学中的关键功能。
    Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    X连锁肌管肌病(XLMTM),继发于编码肌管蛋白的MTM1基因致病变异的中央核先天性肌病,通常被认为是其经典和严重的表型,包括新生儿张力减退,严重的肌肉无力,长期依赖呼吸机,明显延迟的总运动里程碑,无法独立行走,以及高新生儿和儿童死亡率。然而,温和的先天性形式的条件和其他表型是公认的。我们描述了一个6岁男孩,具有轻度的XLMTM表型,具有独立的步态,即使在新生儿期也没有呼吸功能不全。该儿童在MTM1基因中具有半合子的新型剪接位点变异(c.232-25A>T),其致病性已通过cDNA研究(外显子5跳跃)和肌肉活检结果证实。我们还将我们患者的表型与少数报告的病例进行了比较,这些病例在出生时表现为轻度XLMTM表型且无呼吸窘迫,并讨论了这种表型的潜在机制,例如正常肌管蛋白转录物残留表达的存在。
    X-linked myotubular myopathy (XLMTM), a centronuclear congenital myopathy secondary to pathogenic variants in the MTM1 gene encoding myotubularin, is typically recognized for its classic and severe phenotype which includes neonatal hypotonia, severe muscle weakness, long-term ventilator dependence, markedly delayed gross motor milestones with inability to independently ambulate, and a high neonatal and childhood mortality. However, milder congenital forms of the condition and other phenotypes are recognized. We describe a 6-year-old boy with a mild XLMTM phenotype with independent gait and no respiratory insufficiency even in the neonatal period. The child has a hemizygous novel splice site variant in the MTM1 gene (c.232-25A > T) whose pathogenicity was confirmed by cDNA studies (exon 5 skipping) and muscle biopsy findings. We also compared the phenotype of our patient with the few reported cases that presented a mild XLMTM phenotype and no respiratory distress at birth, and discussed the potential mechanisms underlying this phenotype such as the presence of residual expression of the normal myotubularin transcript.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:在发育中的心脏中逐渐形成横向小管(t-小管),关键实现心肌细胞Ca2+稳态的成熟。膜弯曲和支架蛋白BIN1(两栖蛋白-2)参与了这一过程。然而,目前尚不清楚所报道的各种BIN1亚型涉及哪些,以及BIN1功能是否受其推定的结合伴侣MTM1(肌管蛋白)调节,磷酸肌醇3'-磷酸酶,和DNM2(dynamin-2),一种被认为介导膜裂变的GTP酶。
    方法:我们研究了BIN1,MTM1和DNM2在发育中的小鼠心肌细胞T管形成中的作用,以及基因修饰的HL-1和人诱导的多能干细胞衍生的心肌细胞。通过共聚焦和Airyscan显微镜对感兴趣的T小管和蛋白质进行成像,通过RT-qPCR和Western印迹检查表达模式。使用Fluo-4记录Ca2+释放。
    结果:我们观察到,在出生后的小鼠心脏中,BIN1从早期发育阶段沿Z线定位,与t小管初始萌芽和支架的作用一致。T管增殖和组织与4种检测到的BIN1亚型的逐步和平行增加有关。观察到所有同种型在心肌细胞中诱导管形,但产生具有不同几何形状的t-小管。BIN1诱导的管状包含L型Ca2通道,与caveolin-3和ryanodine受体共定位,并有效触发Ca2+释放。发育过程中BIN1的上调与MTM1表达的增加平行。尽管MTM1和小鼠心脏BIN1亚型之间没有直接结合,缺乏外显子11,高MTM1水平是BIN1诱导的插管所必需的,表明磷酸肌醇稳态的中心作用。相比之下,发育中的心脏显示DNM2水平下降。的确,我们观察到高水平的DNM2对t管形成有抑制作用,尽管这种蛋白质与BIN1沿Z线定位,并结合所有4种同工型。
    结论:这些发现表明,BIN1,MTM1和DNM2在控制心肌细胞t-小管生长方面具有平衡和协同作用。
    Transverse tubules (t-tubules) form gradually in the developing heart, critically enabling maturation of cardiomyocyte Ca2+ homeostasis. The membrane bending and scaffolding protein BIN1 (bridging integrator 1) has been implicated in this process. However, it is unclear which of the various reported BIN1 isoforms are involved, and whether BIN1 function is regulated by its putative binding partners MTM1 (myotubularin), a phosphoinositide 3\'-phosphatase, and DNM2 (dynamin-2), a GTPase believed to mediate membrane fission.
    We investigated the roles of BIN1, MTM1, and DNM2 in t-tubule formation in developing mouse cardiomyocytes, and in gene-modified HL-1 and human-induced pluripotent stem cell-derived cardiomyocytes. T-tubules and proteins of interest were imaged by confocal and Airyscan microscopy, and expression patterns were examined by RT-qPCR and Western blotting. Ca2+ release was recorded using Fluo-4.
    We observed that in the postnatal mouse heart, BIN1 localizes along Z-lines from early developmental stages, consistent with roles in initial budding and scaffolding of t-tubules. T-tubule proliferation and organization were linked to a progressive and parallel increase in 4 detected BIN1 isoforms. All isoforms were observed to induce tubulation in cardiomyocytes but produced t-tubules with differing geometries. BIN1-induced tubulations contained the L-type Ca2+ channel, were colocalized with caveolin-3 and the ryanodine receptor, and effectively triggered Ca2+ release. BIN1 upregulation during development was paralleled by increasing expression of MTM1. Despite no direct binding between MTM1 and murine cardiac BIN1 isoforms, which lack exon 11, high MTM1 levels were necessary for BIN1-induced tubulation, indicating a central role of phosphoinositide homeostasis. In contrast, the developing heart exhibited declining levels of DNM2. Indeed, we observed that high levels of DNM2 are inhibitory for t-tubule formation, although this protein colocalizes with BIN1 along Z-lines, and binds all 4 isoforms.
    These findings indicate that BIN1, MTM1, and DNM2 have balanced and collaborative roles in controlling t-tubule growth in cardiomyocytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Hippo途径是一种进化上保守的发育途径,通过整合不同的调控输入来控制器官大小,包括肌动球蛋白介导的细胞骨架张力。尽管在肌动球蛋白细胞骨架和Hippo途径之间建立了联系,河马途径中肌动球蛋白的上游调节定义较少。这里,我们确定了磷酸肌醇-3-磷酸酶Myotubularin(Mtm)是一种新型的肌动球蛋白上游调节因子,在生长控制过程中与Hippo途径协同作用。机械上,Mtm调节膜磷脂PI(3)P动力学,which,反过来,通过Rab11介导的囊泡运输调节肌动球蛋白活性。我们揭示了PI(3)P动力学是肌动球蛋白上游调节的新模式,并在生长控制的背景下将Rab11介导的囊泡运输确立为膜脂质动力学与肌动球蛋白活化之间的功能联系。我们的研究还表明,果蝇Mtm的人类对应物MTMR2,在调节肌动球蛋白活性和组织生长方面具有保守的功能,为MTMR2相关周围神经髓鞘形成和人类疾病的分子基础提供了新的见解。
    The Hippo pathway is an evolutionarily conserved developmental pathway that controls organ size by integrating diverse regulatory inputs, including actomyosin-mediated cytoskeletal tension. Despite established connections between the actomyosin cytoskeleton and the Hippo pathway, the upstream regulation of actomyosin in the Hippo pathway is less defined. Here, we identify the phosphoinositide-3-phosphatase Myotubularin (Mtm) as a novel upstream regulator of actomyosin that functions synergistically with the Hippo pathway during growth control. Mechanistically, Mtm regulates membrane phospholipid PI(3)P dynamics, which, in turn, modulates actomyosin activity through Rab11-mediated vesicular trafficking. We reveal PI(3)P dynamics as a novel mode of upstream regulation of actomyosin and establish Rab11-mediated vesicular trafficking as a functional link between membrane lipid dynamics and actomyosin activation in the context of growth control. Our study also shows that MTMR2, the human counterpart of Drosophila Mtm, has conserved functions in regulating actomyosin activity and tissue growth, providing new insights into the molecular basis of MTMR2-related peripheral nerve myelination and human disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    X连锁肌管肌病(XLMTM)是一种严重的骨骼肌单基因疾病。它是由肌管蛋白(MTM1)基因的表达缺失/功能突变引起的。关于这种疾病的大部分知识,以及治疗策略,已经通过临床前模型的实验发现,特别是Mtm1基因敲除小鼠系(Mtm1KO)。尽管有这样的理解,以及潜在治疗方法的确定,关于XLMTM疾病的病理机制还有很多有待理解,以及MTM1在肌肉发育中的正常功能。为解决这些知识差距奠定基础,我们对Mtm1KO小鼠进行了自然史研究。这包括运动表型的纵向比较分析,转录组和蛋白质组,肌肉结构和靶向分子途径。我们确定了基因表达的年龄相关变化,线粒体功能,肌纤维大小和关键分子标记,包括DNM2。重要的是,一些分子和组织病理学变化先于明显的表型变化,而其他人,例如三合会结构变化,与严重的弱点同时发生。总的来说,这项研究提供了小鼠XLMTM疾病过程的全面纵向评估,从而为未来的调查提供了一个关键的框架。
    X-linked myotubular myopathy (XLMTM) is a severe monogenetic disorder of the skeletal muscle. It is caused by loss-of-expression/function mutations in the myotubularin (MTM1) gene. Much of what is known about the disease, as well as the treatment strategies, has been uncovered through experimentation in pre-clinical models, particularly the Mtm1 gene knockout mouse line (Mtm1 KO). Despite this understanding, and the identification of potential therapies, much remains to be understood about XLMTM disease pathomechanisms, and about the normal functions of MTM1 in muscle development. To lay the groundwork for addressing these knowledge gaps, we performed a natural history study of Mtm1 KO mice. This included longitudinal comparative analyses of motor phenotype, transcriptome and proteome profiles, muscle structure and targeted molecular pathways. We identified age-associated changes in gene expression, mitochondrial function, myofiber size and key molecular markers, including DNM2. Importantly, some molecular and histopathologic changes preceded overt phenotypic changes, while others, such as triad structural alternations, occurred coincidentally with the presence of severe weakness. In total, this study provides a comprehensive longitudinal evaluation of the murine XLMTM disease process, and thus provides a critical framework for future investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自噬是一种保守的,在自噬体中捕获蛋白水解货物以进行溶酶体降解的多步骤过程。清除神经退行性疾病中积累的有毒蛋白质的能力证明了自噬途径的疾病修饰潜力。然而,神经元仅对诱导自噬的常规方法反应轻微,限制开发治疗性自噬调节剂治疗神经退行性疾病的努力。神经元中弱自噬诱导的决定因素以及神经元和其他细胞类型对自噬刺激的差异敏感程度是不完全确定的。因此,我们采样了成纤维细胞的新生转录物合成和稳定性,诱导多能干细胞(iPSCs),和iPSC衍生的神经元(iNeuons),从而揭示了编码肌管蛋白相关磷酸酶5(MTMR5)的转录本的神经元特异性稳定性。MTMR5是一种自噬抑制剂,与其结合伴侣起作用,MTMR2,去磷酸化对自噬启动和自噬成熟至关重要的磷酸肌醇。我们发现MTMR5对于抑制iNeuons和未分化iPSCs中的自噬是必要且足够的。使用光脉冲标记来可视化活细胞中内源性编码蛋白质的周转,我们观察到,敲低MTMR5或MTMR2,而非无关磷酸酶MTMR9,显著增强了TDP-43的神经元降解,TDP-43是一种与多种神经退行性疾病有关的自噬底物.因此,我们的发现建立了神经元固有的自噬调节机制,并以细胞类型特异性方式靶向清除疾病相关蛋白。这样做,我们的研究结果不仅揭示了神经元生物学和蛋白稳定的新方面,而且阐明了调节神经元自噬的策略,该策略可能对多种神经退行性疾病具有很高的治疗潜力.
    Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway. However, neurons respond only marginally to conventional methods for inducing autophagy, limiting efforts to develop therapeutic autophagy modulators for neurodegenerative diseases. The determinants underlying poor autophagy induction in neurons and the degree to which neurons and other cell types are differentially sensitive to autophagy stimuli are incompletely defined. Accordingly, we sampled nascent transcript synthesis and stabilities in fibroblasts, induced pluripotent stem cells (iPSCs), and iPSC-derived neurons (iNeurons), thereby uncovering a neuron-specific stability of transcripts encoding myotubularin-related phosphatase 5 (MTMR5). MTMR5 is an autophagy suppressor that acts with its binding partner, MTMR2, to dephosphorylate phosphoinositides critical for autophagy initiation and autophagosome maturation. We found that MTMR5 is necessary and sufficient to suppress autophagy in iNeurons and undifferentiated iPSCs. Using optical pulse labeling to visualize the turnover of endogenously encoded proteins in live cells, we observed that knockdown of MTMR5 or MTMR2, but not the unrelated phosphatase MTMR9, significantly enhances neuronal degradation of TDP-43, an autophagy substrate implicated in several neurodegenerative diseases. Our findings thus establish a regulatory mechanism of autophagy intrinsic to neurons and targetable for clearing disease-related proteins in a cell-type-specific manner. In so doing, our results not only unravel novel aspects of neuronal biology and proteostasis but also elucidate a strategy for modulating neuronal autophagy that could be of high therapeutic potential for multiple neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微生物感染与神经退行性疾病如肌萎缩侧索硬化症的发病和严重程度有关。多发性硬化症,老年痴呆症,但是潜在的机制在很大程度上仍然未知。这里,我们对与感染相关的神经变性保护相关的基因进行了基因筛选,并鉴定了基因mtm-10。然后我们验证了编码的肌管蛋白相关蛋白的作用,MTM-10在保护秀丽隐杆线虫的树突免受氧化应激或铜绿假单胞菌感染介导的变性中。进一步的实验表明mtm-10在秀丽隐杆线虫的AWC神经元中表达,它以细胞自主的方式发挥作用,以保护由病原体感染引起的树突变性。我们还证实,在动物树突中观察到的变化不是因为过早死亡或整体疾病。最后,我们的研究表明,mtm-10在AWC神经元中起作用,以保持病原体感染后的化学感觉。这些结果揭示了肌管蛋白相关蛋白10在保护树突形态和功能免受氧化应激或感染的有害作用中的重要作用。
    Microbial infections have been linked to the onset and severity of neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer\'s disease, but the underlying mechanisms remain largely unknown. Here, we used a genetic screen for genes involved in protection from infection-associated neurodegeneration and identified the gene mtm-10. We then validated the role of the encoded myotubularin-related protein, MTM-10, in protecting the dendrites of Caenorhabditis elegans from degeneration mediated by oxidative stress or Pseudomonas aeruginosa infection. Further experiments indicated that mtm-10 is expressed in the AWC neurons of C. elegans, where it functions in a cell-autonomous manner to protect the dendrite degeneration caused by pathogen infection. We also confirm that the changes observed in the dendrites of the animals were not because of premature death or overall sickness. Finally, our studies indicated that mtm-10 functions in AWC neurons to preserve chemosensation after pathogen infection. These results reveal an essential role for myotubularin-related protein 10 in the protection of dendrite morphology and function against the deleterious effects of oxidative stress or infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号