myosin II ATPase

  • 文章类型: Journal Article
    最近,活体心脏切片已成为基础心脏研究的强大实验模型。通过保留天然心肌的结构和功能,同时保持细胞培养模型的简单性,心脏切片可以很容易地用于电生理,药理学,生物化学,和结构调查。一个心脏产生许多切片(啮齿动物>20切片,>100片用于猪或人的心脏),然而,由于大多数分析的低通量和24小时内制备的快速切片变性,许多切片仍未使用,并在准备日结束时丢弃。在这里,我们提出了一种新的方法来扩展活心脏切片的活力和功能,使它们能够在制备后的连续几天内用于实验。通过将低温条件与使用2,3-丁二酮单肟(BDM)抑制肌球蛋白IIATPase相结合,从猪心脏的左心室制备的切片保持存活并且表现出保留的收缩功能和形态长达6天。还通过细胞外场电位记录证实了6天的电生理功能。这种简单的方法不仅最大限度地利用从一个单一的心脏制备的切片,从而减少了所需的动物数量,而且还通过允许多个电生理来增加数据的可重复性,药理学,生物化学,和结构研究从同一个心脏进行。
    Living heart slices have recently emerged as a powerful experimental model for fundamental cardiac research. By retaining the structure and function of the native myocardium while maintaining the simplicity of cell culture models, heart slices can be easily employed in electrophysiological, pharmacological, biochemical, and structural investigations. One single heart yields many slices (>20 slices for rodents, >100 slices for porcine or human hearts), however due to the low throughput of most assays and rapid slice degeneration within 24 h of preparation, many slices remain unused and are discarded at the end of the preparation day. Here we present a novel method to extend viability and functionality of living heart slices, enabling their use in experiments over several consecutive days following preparation. By combining hypothermic conditions with inhibition of myosin II ATPase using 2,3-butanedione monoxime (BDM), slices prepared from the left ventricle of porcine hearts remain viable and exhibit preserved contractile function and morphology for up to 6 days. Electrophysiological function was also confirmed over the 6 days by extracellular field potentials recordings. This simple method not only maximizes the use of slices prepared from one single heart, thus reducing the number of animals required, but also increases data reproducibility by allowing multiple electrophysiological, pharmacological, biochemical, and structural studies to be performed from the same heart.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    T细胞在产生适应性免疫应答中起关键作用。T细胞在识别由APC呈递的同源Ag时被激活。随后,T细胞与其他活化的T细胞粘附形成活化簇,这导致细胞因子在通信细胞之间的定向分泌。T细胞活化簇与调节活化有关,扩散,和T细胞中的记忆形成。我们先前报道了人T细胞对蛋白酶抑制剂neuroserpin的表达,并表明表达和细胞内定位在T细胞活化后受到调节。为了更好地了解神经血清素在蛋白水解环境中的活化后,我们评估了其在人类T细胞聚集和增殖中的作用。Neuroserpin敲低增加T细胞增殖和T细胞活化后的簇形成。这种增加的簇形成取决于蛋白酶组织纤溶酶原激活物(tPA)和纤溶酶。此外,T细胞的神经酶抑制或纤溶酶处理增加了膜联蛋白A2的裂解,膜联蛋白A2是调节肌动蛋白细胞骨架的已知纤溶酶靶标。活化T细胞的活细胞成像进一步表明肌动蛋白细胞骨架在T细胞聚集中的作用。肌动蛋白调节肌球蛋白ATPase和Rho相关蛋白激酶信号传导的抑制完全逆转了神经血清蛋白敲低诱导的作用。这项研究的结果揭示了神经血清素和蛋白水解环境在T细胞活化生物学调节中的新作用。
    T cells play a key role in mounting an adaptive immune response. T cells are activated upon recognition of cognate Ag presented by an APC. Subsequently, T cells adhere to other activated T cells to form activation clusters, which lead to directed secretion of cytokines between communicating cells. T cell activation clusters have been implicated in regulating activation, proliferation, and memory formation in T cells. We previously reported the expression of the protease inhibitor neuroserpin by human T cells and showed that expression and intracellular localization is regulated following T cell activation. To gain a better understanding of neuroserpin in the proteolytic environment postactivation we assessed its role in human T cell clustering and proliferation. Neuroserpin knockdown increased T cell proliferation and cluster formation following T cell activation. This increased cluster formation was dependent on the proteases tissue plasminogen activator (tPA) and plasmin. Furthermore, neuroserpin knockdown or plasmin treatment of T cells increased the cleavage of annexin A2, a known plasmin target that regulates the actin cytoskeleton. Live cell imaging of activated T cells further indicated a role of the actin cytoskeleton in T cell clustering. The inhibition of actin regulators myosin ATPase and Rho-associated protein kinase signaling completely reversed the neuroserpin knockdown-induced effects. The results presented in this study reveal a novel role for neuroserpin and the proteolytic environment in the regulation of T cell activation biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca2+ concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cardiac myosin binding protein-C (cMyBP-C) is a structural and regulatory component of cardiac thick filaments. It is observed in electron micrographs as seven to nine transverse stripes in the central portion of each half of the A band. Its C-terminus binds tightly to the myosin rod and contributes to thick filament structure, while the N-terminus can bind both myosin S2 and actin, influencing their structure and function. Mutations in the MYBPC3 gene (encoding cMyBP-C) are commonly associated with hypertrophic cardiomyopathy (HCM). In cardiac cells there exists a population of myosin heads in the super-relaxed (SRX) state, which are bound to the thick filament core with a highly inhibited ATPase activity. This report examines the role cMyBP-C plays in regulating the population of the SRX state of cardiac myosin by using an assay that measures single ATP turnover of myosin. We report a significant decrease in the proportion of myosin heads in the SRX state in homozygous cMyBP-C knockout mice, however heterozygous cMyBP-C knockout mice do not significantly differ from the wild type. A smaller, non-significant decrease is observed when thoracic aortic constriction is used to induce cardiac hypertrophy in mutation negative mice. These results support the proposal that cMyBP-C stabilises the thick filament and that the loss of cMyBP-C results in an untethering of myosin heads. This results in an increased myosin ATP turnover, further consolidating the relationship between thick filament structure and the myosin ATPase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cardiomyocytes represent one of the most useful models to conduct cardiac research. A single adult heart yields millions of cardiomyocytes, but these cells do not survive for long after isolation. We aimed to determine whether inhibition of myosin II ATPase that is essential for muscle contraction may preserve fully differentiated adult cardiomyocytes. Using inhibitors of the myosin II ATPase, blebbistatin and N-benzyl-p-toluene sulphonamide (BTS), we preserved freshly isolated fully differentiated adult primary cardiomyocytes that were stored at a refrigerated temperature. Specifically, preserved cardiomyocytes stayed viable for a 2-week period with a stable expression of cardiac genes and retained the expression of key markers characteristic of cardiomyocytes. Furthermore, voltage-clamp, action potential, calcium transient and contractility studies confirmed that the preserved cardiomyocytes are comparable to freshly isolated cells. Long-term exposure of preserved cardiomyocytes to four tyrosine kinase inhibitors, sunitinib malate, dasatinib, sorafenib tosylate and imatinib mesylate, revealed their potential to induce cardiac toxicity that was manifested with a decrease in contractility and induction of cell death, but this toxicity was not observed in acute experiments conducted over the time course amenable to freshly prepared cardiomyocytes. This study introduces the concept that the inhibition of myosin II ATPase safeguards the structure and function of fully differentiated adult cardiomyocytes. The fact that these preserved cardiomyocytes can be used for numerous days after preparation makes them a robust and versatile tool in cardiac research and allows the investigation of long-term exposure to novel drugs on cardiomyocyte function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号