mutation scanning

  • 文章类型: Journal Article
    High resolution DNA melting of PCR products is a simple technique for sequence variant detection and analysis. However, sensitivity and specificity vary and depend on many factors that continue to be defined. We introduce the area between normalized melting curves as a metric to quantify genotype discrimination. The effects of amplicon size (51-547 bp), melting rate (0.01-0.64 °C/s) and analysis method (curve shape by overlay vs absolute temperature differences) were qualitatively and quantitatively analyzed. To limit experimental variance, we studied a single nucleotide variant with identical predicted wild type and homozygous variant stabilities by nearest neighbor thermodynamic theory. Heterozygotes were easier to detect in smaller amplicons, at faster melting rates, and after curve overlay (superimposition), with some p-values <10-20. As heterozygote melting rates increase, the relative magnitude of heteroduplex contributions to melting curves increases, apparently the result of non-equilibrium processes. In contrast to heterozygotes, the interplay between curve overlay, PCR product size, and analysis method is complicated for homozygote genotype discrimination and is difficult to predict. Similar to temperature cycling in PCR, if the temperature control and temperature homogeneity of the solution are adequate, faster rates improve melting analysis, just like faster rates improve PCR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Mutation scanning methods in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene may not distinguish between a Cystic Fibrosis (CF) causing mutation and a benign variant. We have developed a simple and fast method for scanning 14 selected CF-causing mutations which have high frequency in Latin America.
    In a group of 35 samples coming from CF patients previously characterized and using two allele-specific real-time multiplex PCRs targeting wild-type and mutant alleles respectively, we detect the presence of mutations by analyzing the Ct variation. Twenty-five samples without mutations considered non-carrier samples, were also included in this study. High Resolution Melting Analysis (HRMA) was performed to confirm the result of the scanning method and in most cases allowed the genotype determination.
    The results validate this method for CF diagnosis. A least one CFTR gene mutation was detected in the samples of CF patients, as predicted by their ΔCt values. The ΔCt value also indicated the zygosity of the sample according to the distribution of CFTR gene mutations. In most cases, HRMA allowed the identification of the mutation(s), thereby confirming the efficiency of this scanning strategy.
    This strategy simplifies the detection of CF, reducing the analysis of 14 CF-causing mutations to two parallel reactions and making the procedure compatible with the analysis of a large number of samples. As the method is fast, inexpensive and highly reliable, it is advisable for scanning CFTR gene mutations in newborns, patients with a clinical suspicion of CF as well as in the preconception carrier screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    通过DNA解链分析(DMA)扫描突变是基于不对称PCR,然后用TaqMan探针解链由单链扩增子形成的双链体。该方法最适合临床基因检测;它易于执行,高通量,和敏感。DMA法对突变等位基因的检测限约为3%,远远高于Sanger测序的灵敏度。此外,DMA方法以封闭管格式实现,而在没有任何中间或额外程序的单管中进行2小时测定,从而最大限度地减少样品交叉污染的风险。通过扫描具有临床意义的基因KRAS的突变来进行DMA方法的验证,NRAS,BRAF,和PIK3CA来自黑色素瘤患者肿瘤的324个DNA样本,结直肠癌和肺癌。DNA直接从肿瘤组织中分离,或福尔马林固定石蜡包埋的肿瘤组织。通过Sanger测序验证检测到的突变。在每种肿瘤类型中鉴定的突变光谱与文献数据相对应,因此,验证DMA的使用。
    Scanning for mutations by DNA melting analysis (DMA) is based on asymmetric PCR followed by the melting of duplexes formed by single-stranded amplicons with TaqMan probes. The method is optimally suited for clinical genetic testing; it is easy to perform, high-throughput, and sensitive. The detection limit of mutant alleles by the DMA method is about 3%, which is much higher than the sensitivity of Sanger sequencing. In addition, the DMA method is realized in a closed-tube format, while 2-h assay is carried out in a single tube without any intermediate or additional procedures thereby minimizing the risk of cross contamination of the samples. The validation of the DMA method was performed by scanning for mutations of clinically significant genes KRAS, NRAS, BRAF, and   PIK3CA in 324 DNA samples from tumors of patients with melanoma, colorectal and lung cancer. DNA was isolated either directly from tumor tissues, or from formalin-fixed paraffin-embedded tumor tissues. The detected mutations were verified by Sanger sequencing. The spectra of mutations identified in each tumor type correspond to the literature data and, thus, validate the use of DMA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The data in this article are related to the research article entitled \"Optimization of melting analysis with TaqMan probes for detection of KRAS, NRAS, and BRAF mutations\" Botezatu et al. [1]. Somatic mutations in the PIK3CA gene (\"hot spots\" in exons 9 and 20) are found in many human cancers, and their presence can determine prognosis and a treatment strategy. An effective method of mutation scanning PIK3CA in clinical laboratories is DNA Melting Analysis (DMA) (Vorkas et al., 2010; Simi et al., 2008) [2], [3]. It was demonstrated recently that the TaqMan probes which have been long used in Real Time PCR may also be utilized in DMA (Huang et al., 2011) [4]. After optimization of this method Botezatu et al. [1], it was used for multiplex scanning PIK3CA hotspot mutations in formalin-fixed paraffin-embedded (FFPE) samples from patients with colorectal and lung cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The TaqMan probes that have been long and effectively used in real-time polymerase chain reaction (PCR) may also be used in DNA melting analysis. We studied some factors affecting efficiency of the approach such as (i) number of asymmetric PCR cycles preceding DNA melting analysis, (ii) choice of fluorophores for the multiplex DNA melting analysis, and (iii) choice of sense or antisense TaqMan probes for optimal resolution of wild-type and mutant alleles. We also determined ΔTm (i.e., the temperature shift of a heteroduplex relative to the corresponding homoduplex) as a means of preliminary identification of mutation type. In experiments with serial dilution of mutant KRAS DNA with wild-type DNA, the limit of detection of mutant alleles was 1.5-3.0%. Using DNA from both tumor and formalin-fixed paraffin-embedded tissues, we demonstrated a high efficiency of TaqMan probes in mono- and multiplex mutation scanning of KRAS, NRAS (codons 12, 13, and 61), and BRAF (codon 600) genes. This cost-effective method, which can be applied to practically any mutation hot spot in the human genome, combines simplicity, ease of execution, and high sensitivity-all of the qualities required for clinical genotyping.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The objectives of the present work were to verify whether simultaneous exposure to Hoechst 33342 and UV irradiation during sorting by flow cytometry may induce gene point mutations in bovine sperm and to assess whether the dye incorporated in the sperm may imply a mutagenic effect during the embryonic development. To this aim, high-resolution melt analysis (HRMA) was used to discriminate variations of single nucleotides in sexed vs. non-sexed control samples. Three batches of sorted and non-sorted commercial semen of seven bulls (42 samples) were subjected to HRMA. A set of 139 genes located on all the chromosomes was selected, and 407 regions of the genome covering a total of 83 907 bases were analyzed. Thereafter, sperm of one sexed and one non-sexed batch of each bull was used in in vitro fertilization, and the derived embryos were analyzed (n = 560). One hundred and thirty-three regions of the bovine genome, located in 40 genes, were screened for a total coverage of 23 397 bases. The comparison between the frequencies of variations, with respect to the sequences deposited, observed in the sexed and non-sexed sperm (843 vs. 770) and embryos (246 vs. 212) showed no significant differences (P > 0.05), as measured by chi-square tests. It can be concluded that staining with Hoechst 33342 and exposure to UV during sorting does not lead to significant changes in the frequencies of variants in the commercial sexed semen and in embryos produced in vitro with the same treated sperm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited condition caused by PKD1 and PKD2 mutations. Complete analysis of both genes is typically required in each patient. In this study, we explored the utility of High-Resolution Melt (HRM) as a tool for mutation analysis of the PKD2 gene in ADPKD families.
    METHODS: HRM is a mismatch-detection method based on the difference of fluorescence absorbance behavior during the melting of the DNA double strand to denatured single strands in a mutant sample as compared to a reference control. Our families were previously screened by linkage analysis. Subsequently, HRM was used to characterize PKD2-linked families. Amplicons that produced an overlapping profile sample versus wild-type control were not further evaluated, while those amplicons with profile deviated from the control were consequently sequenced.
    RESULTS: We analyzed 16 PKD2-linked families by HRM analysis. We observed ten different variations: six single-nucleotide polymorphisms and four mutations. The mutations detected by HRM and confirmed by sequencing were as follows: 1158T>A, 2159delA, 2224C>T, and 2533C>T. In particular, the same haplotype block and nonsense mutation 2533C>T was found in 8 of 16 families, so we suggested the presence of a founder effect in our province.
    CONCLUSIONS: We have developed a strategy for rapid mutation analysis of the PKD2 gene in ADPKD families, which utilizes an HRM-based prescreening followed by direct sequencing of amplicons with abnormal profiles. This is a simple and good technique for PKD2 genotyping and may significantly reduce the time and cost for diagnosis in ADPKD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号