muscle-eye-brain

  • 文章类型: Case Reports
    Dystroglycanopathy is a type of congenital muscular dystrophy caused by mutations causing defective glycosylation of a dystrophin-associated glycoprotein, dystroglycan and as such is a very rare disease entity. We are reporting a 1-year-old girl child with dystroglycanopathy who presented with motor predominant developmental delay. She had motor development quotient of 52, mental development quotient of 75, facial dysmorphism, mixed hypotonia with a global decrease in muscle power, and areflexia. Serum CPK level was elevated; magnetic resonance imaging brain revealed multiple intraparenchymal cysts in the cerebellum with disorganized folia. Next-generation sequencing revealed a homozygous missense mutation in exon 3 of the ISPD gene (p.Gln215His; ENST00000407010) consistent with the diagnosis of dystroglycanopathy muscle-eye-brain disease. Genetic counseling and prenatal diagnosis for subsequent pregnancies were advised for the family, apart from appropriate rehabilitation for the child.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    Muscular weakness and hypotonia may be associated with multisystem involvement giving rise to complex phenotypes, many of which are uncharacterized. We report a patient presenting with congenital hypotonia and severe ocular and brain abnormalities, evoking a Muscle Eye Brain disease (MEB). She had global muscular weakness, hypotonia and amyotrophy, joint hyperlaxity, kyphoscoliosis, respiratory insufficiency, dysmorphic features and severe intellectual disability. Brain MRI showed cortical atrophy and hypoplasia of the corpus callosum. Normal CK levels, non-progressive course and absence of dystrophic features or α-dystroglycan abnormalities on the muscle biopsy were not typical of MEB. CGH array identified a large de novo duplication in chromosome 11, including regions partially duplicated in three other patients with common clinical features. This report adds to the differential diagnosis of complex phenotypes characterized by muscular, ocular and CNS involvement and highlights the potential contribution of still unrecognized chromosomal abnormalities to these phenotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号