multiple steady states

  • 文章类型: Journal Article
    在广义公式中描述了三种确定不可逆过程热力学稳定性的方法。最简单的是Gibbs-Duhem理论,专门研究不可逆转的轨迹,它使用相反方向的虚拟位移的概念。其唯一的缺点是,甚至导致爆炸的轨迹也被认为是热力学稳定的运动。在第二种方法中,我们使用来自Lyapunov热力学稳定性理论的热力学Lyapunov函数及其时间速率(LTS,以前称为CTTSIP)。在这样做的时候,我们证明了熵的二阶微分,一个经常使用的Lyapunov函数,仅对研究平衡态的稳定性有用。非平衡稳态不合格。不使用明确的扰动坐标,我们进一步确定了渐近热力学稳定性和热力学稳定性,在不断作用的非扰动轨迹以及非平衡稳态的干扰下。第三种方法也基于LTS的Lyapunov函数,但是在这里我们还使用摄动坐标的速率,基于吉布斯关系,不使用它们的显式表达式,不仅要确定渐近的热力学稳定性,还要确定在不断作用的干扰下的热力学稳定性。只有那些导致熵产生率无限的轨迹(不稳定状态)被排除在这个结论之外。最后,我们利用这些发现来建立基于热力学稳定性的热力学第四定律。这是一份涵盖所有非平衡轨迹的全面声明,接近和远离平衡。与以前建议的“第四定律”不同,这一个符合与最初的第零到第三定律相关的一般性。使用在某些操作区域中具有多个稳态的Schl_gl反应来说明上文。
    Three approaches for determining the thermodynamic stability of irreversible processes are described in generalized formulations. The simplest is the Gibbs-Duhem theory, specialized to irreversible trajectories, which uses the concept of virtual displacement in the reverse direction. Its only drawback is that even a trajectory leading to an explosion is identified as a thermodynamically stable motion. In the second approach, we use a thermodynamic Lyapunov function and its time rate from the Lyapunov thermodynamic stability theory (LTS, previously known as CTTSIP). In doing so, we demonstrate that the second differential of entropy, a frequently used Lyapunov function, is useful only for investigating the stability of equilibrium states. Nonequilibrium steady states do not qualify. Without using explicit perturbation coordinates, we further identify asymptotic thermodynamic stability and thermodynamic stability under constantly acting disturbances of unperturbed trajectories as well as of nonequilibrium steady states. The third approach is also based on the Lyapunov function from LTS, but here we additionally use the rates of perturbation coordinates, based on the Gibbs relations and without using their explicit expressions, to identify not only asymptotic thermodynamic stability but also thermodynamic stability under constantly acting disturbances. Only those trajectories leading to an infinite rate of entropy production (unstable states) are excluded from this conclusion. Finally, we use these findings to formulate the Fourth Law of thermodynamics based on the thermodynamic stability. It is a comprehensive statement covering all nonequilibrium trajectories, close to as well as far from equilibrium. Unlike previous suggested \"fourth laws\", this one meets the same level of generality that is associated with the original zeroth to third laws. The above is illustrated using the Schlögl reaction with its multiple steady states in certain regions of operation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    This paper proposes a model of statehood, defined as elite extraction of resources from a subject population. Different from most of the existing literature, the size of the subject population evolves endogenously in a Malthusian fashion, and the elite take into account the effects on future population levels when taxing the current population. The elite can spend extracted resources by investing in productive and extractive capacities. Productive capacity increases the size of the pie, while extractive capacity makes it easier for the elite to tax it. Together-but not each on its own-these two types of investment can give rise to multiple steady-state equilibria, such that one steady state has both a higher rate of extraction, and higher population density and output, than the other steady state. The model can also account for a positive empirical relationship between land productivity and state antiquity among countries with relatively late state development.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s10887-021-09188-9.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The paper reports the occurrence of multiple steady-state zones in most of the constructions of fixed-bed photocatalytic reactors. Such a phenomenon has not been ever observed in a field of photocatalytic reactors. The simulation has been provided for a common case in a photocatalysis-the degradation of colored compounds. The mathematical model of the photocatalytic reactor with immobilized bed has been stated by a simple ideal mixing model (analogous to the CSTR model). The solution has been continued by the two parameters-the Damköhler number and the absorption coefficient related to the inlet stream concentration. Some branches of steady states include the limit point. The performed two-parametric continuation of the limit point showed the cusp bifurcation point. Besides the numerical simulation, the physical explanation of the observed phenomenon has been provided; the multiple steady-states occurrence is controlled by light absorption-reaction rate junction. When the reaction rate is limited by the light absorption, we can say that a light barrier occurs. The dynamical simulations show that when the process is operated in a field of multiple steady states, the overall reactor efficiency is related to the reactor set-up mode.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号