multidrug transporter

  • 文章类型: Journal Article
    人ABCG2多药转运体在外源性和内源性生物的吸收和排泄中起着至关重要的作用,有助于癌症耐药和痛风的发展。在这项工作中,我们分析了选定变体的效果,驻留在ABCG2的结构未解析的细胞质区域(a.a.354-367)上,研究该蛋白质的功能和运输。先前已经提出了该区域中的四个赖氨酸簇(K357-360)和苏氨酸(T362)残基的磷酸化显著影响ABCG2的细胞命运。这里,我们报道,人细胞中天然存在的K360del变体增加了ABCG2质膜表达并加速了细胞运输。相邻赖氨酸的可变丙氨酸置换对转运功能没有显著影响,这些突变均未改变ABCG2在极化细胞中的顶端定位。此外,与以前的报告相比,我们发现磷酸化不合格的T362A,或该环中的磷酸化模拟T362E变体对ABCG2的功能或表达没有可测量的影响。分子动力学模拟表明,突变变体的迁移率增加,对蛋白质的核心结构没有重大影响。这些结果可能有助于破译该非结构化区域在该转运蛋白中的潜在作用。
    The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics, contributes to cancer drug resistance and the development of gout. In this work, we have analyzed the effects of selected variants, residing in a structurally unresolved cytoplasmic region (a.a. 354-367) of ABCG2 on the function and trafficking of this protein. A cluster of four lysines (K357-360) and the phosphorylation of a threonine (T362) residue in this region have been previously suggested to significantly affect the cellular fate of ABCG2. Here, we report that the naturally occurring K360del variant in human cells increased ABCG2 plasma membrane expression and accelerated cellular trafficking. The variable alanine replacements of the neighboring lysines had no significant effect on transport function, and the apical localization of ABCG2 in polarized cells has not been altered by any of these mutations. Moreover, in contrast to previous reports, we found that the phosphorylation-incompetent T362A, or the phosphorylation-mimicking T362E variants in this loop had no measurable effects on the function or expression of ABCG2. Molecular dynamics simulations indicated an increased mobility of the mutant variants with no major effects on the core structure of the protein. These results may help to decipher the potential role of this unstructured region within this transporter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多药耐药(MDR)转运蛋白,如ATP结合盒(ABC)和主要促进超家族蛋白是抗真菌药物耐药性的重要介质。特别是关于唑类药物。因此,鉴定对这种耐药机制不敏感的分子是发现新抗真菌药物的重要目标。作为优化临床使用的酚噻嗪的抗真菌活性项目的一部分,我们合成了对念珠菌的活性高8倍的氟奋乃静衍生物(CWHM-974)。与氟奋乃静相比,具有抗念珠菌的活性。由于MDR转运蛋白增加,氟康唑敏感性降低。这里,我们表明,白色念珠菌活性的改善是因为氟奋乃静通过触发念珠菌耐药(CDR)转运体的表达来诱导其自身的耐药性,而CWHM-974诱导表达,但似乎不是转运体的底物或对其作用不敏感通过其他机制。我们还发现氟奋乃静和CWHM-974在白色念珠菌中与氟康唑拮抗,但在光滑念珠菌中没有,尽管诱导CDR1表达到高水平。总的来说,CWHM-974是其中相对较小的结构修饰显着降低对多药转运蛋白介导的抗性的敏感性的分子的少数实例之一。
    Multidrug resistance (MDR) transporters such as ATP-Binding Cassette (ABC) and Major Facilitator Superfamily proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against Candida spp. compared to the fluphenazine and with activity against Candida spp. with reduced fluconazole susceptibility due to increased MDR transporters. Here, we show that the improved C. albicans activity is because fluphenazine induces its own resistance by triggering expression of Candida drug resistance (CDR) transporters while CWHM-974 induces expression but does not appear to be a substrate for the transporters or is insensitive to their effects through other mechanisms. We also found that fluphenazine and CWHM-974 are antagonistic with fluconazole in C. albicans but not in C. glabrata, despite inducing CDR1 expression to high levels. Overall, CWHM-974 is one of the few examples of a molecule in which relatively small structural modifications significantly reduced susceptibility to multidrug transporter-mediated resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    耐药性仍然是犬癫痫治疗管理中的主要临床问题,对生活质量和生存时间有重大影响。来自人类医学的实验和临床数据提供了证据,证明了疾病的内在严重程度以及药代动力学和动力学改变对抗癫痫药物的反应失败的相关贡献。此外,已经确定了几种与治疗反应水平相关的调节因子.其中,潜在调节因素列表包括遗传和表观遗传因素,炎症介质,和代谢物。关于狗的数据,在我们对耐药犬癫痫的临床模式和机制的理解方面,存在明显的知识差距。到目前为止,癫痫发作密度和丛集性癫痫发作的发生与抗癫痫药物反应不良有关.此外,有证据表明,遗传背景和表观遗传机制的改变可能会影响癫痫犬抗癫痫药物的疗效。进一步的分子,细胞,和可能影响内在严重性的网络改变,药代动力学,和动态已经报道。然而,与药物反应性的相关性尚未得到详细研究.总之,迫切需要加强临床和实验研究努力,探索耐药机制及其与不同病因的关联,癫痫类型,和临床课程。
    Drug resistance continues to be a major clinical problem in the therapeutic management of canine epilepsies with substantial implications for quality of life and survival times. Experimental and clinical data from human medicine provided evidence for relevant contributions of intrinsic severity of the disease as well as alterations in pharmacokinetics and -dynamics to failure to respond to antiseizure medications. In addition, several modulatory factors have been identified that can be associated with the level of therapeutic responses. Among others, the list of potential modulatory factors comprises genetic and epigenetic factors, inflammatory mediators, and metabolites. Regarding data from dogs, there are obvious gaps in knowledge when it comes to our understanding of the clinical patterns and the mechanisms of drug-resistant canine epilepsy. So far, seizure density and the occurrence of cluster seizures have been linked with a poor response to antiseizure medications. Moreover, evidence exists that the genetic background and alterations in epigenetic mechanisms might influence the efficacy of antiseizure medications in dogs with epilepsy. Further molecular, cellular, and network alterations that may affect intrinsic severity, pharmacokinetics, and -dynamics have been reported. However, the association with drug responsiveness has not yet been studied in detail. In summary, there is an urgent need to strengthen clinical and experimental research efforts exploring the mechanisms of resistance as well as their association with different etiologies, epilepsy types, and clinical courses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Emre,一种来自大肠杆菌的小型多药耐药(SMR)转运蛋白,赋予多芳族阳离子和季铵化合物广谱抗性。先前的转运测定证明EmrE转运具有相同化学计量的2个质子的+1和+2底物:1个阳离子底物。这表明EmrE底物结合能力仅限于中和两种必需谷氨酸,E14A和E14B(来自反平行同源二聚体中的每个亚基),在主要结合位点。在这里,我们明确地检验了这个假设,因为EmrE一再打破对膜蛋白结构和转运机制的预期。我们先前证明EmrE可以同时结合+1阳离子底物和质子,阳离子底物与一个E14残基强烈缔合,而另一个仍然可以结合和运输质子。在这里,我们证明EmrE可以结合+2阳离子底物和质子同时使用NMRpH滴定EmrE饱和的二价底物,对于运输孔中的净+1电荷。Further,我们发现EmrE可以同时交替访问和传输a2底物和质子。一起,这些结果使我们得出结论,E14电荷中和不限制EmrE的结合和转运能力。
    EmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14A and E14B (one from each subunit in the antiparallel homodimer), in the primary binding site. Here, we explicitly test this hypothesis, since EmrE has repeatedly broken expectations for membrane protein structure and transport mechanism. We previously showed that EmrE can bind a +1 cationic substrate and proton simultaneously, with cationic substrate strongly associated with one E14 residue, whereas the other remains accessible to bind and transport a proton. Here, we demonstrate that EmrE can bind a +2 cation substrate and a proton simultaneously using NMR pH titrations of EmrE saturated with divalent substrates, for a net +1 charge in the transport pore. Furthermore, we find that EmrE can alternate access and transport a +2 substrate and proton at the same time. Together, these results lead us to conclude that E14 charge neutralization does not limit the binding and transport capacity of EmrE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    耐药结瘤细胞分裂(RND)超家族的次级转运蛋白介导革兰氏阴性细菌如铜绿假单胞菌的多药耐药性。在这些RND转运蛋白中,MexB,MexF,还有Mexy,具有部分重叠的特异性,与致病性有关。只有前者的结构已经通过实验解决,再加上缺乏关于全套转运蛋白功能动态的数据,限制了对定义其独特和共同特征的分子决定因素的系统研究。在以前的工作中(Ramaswamy等人。,前面。Microbiol.,2018,9,1144),我们在原子水平上比较了MexB和MexY的两个主要推定识别位点(命名为访问和深结合袋)。在这项工作中,我们通过对这些转运蛋白和病理相关转运蛋白MexF进行扩展分子动力学(MD)模拟来扩展比较。我们采用了更真实的铜绿假单胞菌内部磷脂膜模型和更准确的力场。为了阐明结构/动力学-活性关系,我们进行了物理化学分析,并绘制了几种有机探针在所有转运蛋白上的结合倾向。我们的数据揭示了存在,同样在MexF,在相当于在MexB中检测到的进入和深结合袋的位置处的几个多功能位点。此外,我们首次报道了与外周(早期)识别底物相关的五个通道中的两个通道的多药结合能力。总的来说,我们的发现有助于定义一个共同的“识别拓扑”表征墨西哥运输者,可用于优化抗微生物化合物的运输和抑制倾向。
    The secondary transporters of the resistance-nodulation-cell division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria like Pseudomonas aeruginosa. Among these RND transporters, MexB, MexF, and MexY, with partly overlapping specificities, have been implicated in pathogenicity. Only the structure of the former has been resolved experimentally, which together with the lack of data about the functional dynamics of the full set of transporters, limited a systematic investigation of the molecular determinants defining their peculiar and shared features. In a previous work (Ramaswamy et al., Front. Microbiol., 2018, 9, 1144), we compared at an atomistic level the two main putative recognition sites (named access and deep binding pockets) of MexB and MexY. In this work, we expand the comparison by performing extended molecular dynamics (MD) simulations of these transporters and the pathologically relevant transporter MexF. We employed a more realistic model of the inner phospholipid membrane of P. aeruginosa and more accurate force-fields. To elucidate structure/dynamics-activity relationships we performed physico-chemical analyses and mapped the binding propensities of several organic probes on all transporters. Our data revealed the presence, also in MexF, of a few multifunctional sites at locations equivalent to the access and deep binding pockets detected in MexB. Furthermore, we report for the first time about the multidrug binding abilities of two out of five gates of the channels deputed to peripheral (early) recognition of substrates. Overall, our findings help to define a common \"recognition topology\" characterizing Mex transporters, which can be exploited to optimize transport and inhibition propensities of antimicrobial compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铜绿假单胞菌中的多药外排转运蛋白MexB和MexY和大肠杆菌中的AcrB有助于这些生物的多药耐药性。外排泵抑制剂(EPI)ABI-PP抑制MexB和AcrB,但不是Mexy.我们先前确定了与AcrB和MexB的疏水陷阱(抑制剂结合坑)结合的ABI-PP的结构。MexY对ABI-PP的不敏感性归因于庞大的色氨酸(Trp)。AcrB(Phe178Trp)不受ABI-PP抑制,而MexY(Trp177Phe)将MexY重新敏感为ABI-PP。有趣的是,ABI-PP能够抑制MexB(Phe178Trp)。因此,尚不清楚哪个大的氨基酸突变对于MexB中的抑制剂结合至关重要。这里,我们更详细地调查了MexB的坑,并阐明了坑中的Trp突变位置阻碍了ABI-PP的结合,但不影响外排泵的功能。使位置139、277、279和612突变为色氨酸消除了抑制作用。然而,571位的色氨酸突变未引起任何影响.这些结果表明,EPI的有效性受到不同位置突变的极大影响,EPI的结合部分归因于空间特征。这些结果应考虑到新的抑制剂和药物发现。
    The multidrug efflux transporters MexB and MexY in Pseudomonas aeruginosa and AcrB in Escherichia coli contribute to these organisms\' multidrug resistance. Efflux pump inhibitor (EPI) ABI-PP inhibits MexB and AcrB, but not MexY. We previously determined the structure of ABI-PP bound to the hydrophobic trap (the inhibitor-binding pit) of AcrB and MexB. The insensitivity of MexY to ABI-PP was attributed to a bulky tryptophan (Trp). AcrB(Phe178Trp) became uninhibited by ABI-PP, while MexY(Trp177Phe) resensitized MexY for ABI-PP. Interestingly, ABI-PP was able to inhibit MexB(Phe178Trp). Thus, it is not clear which bulky amino acid mutations are critical for inhibitor binding in MexB. Here, we investigated the pit of MexB in more detail, and elucidated which Trp mutation locations in the pit were hindering ABI-PP binding, but did not affect the function of the efflux pumps. Mutating positions 139, 277, 279, and 612 to tryptophan eliminated the inhibitory effect. However, the tryptophan mutation at position 571 did not cause any effect. These results show that the effectiveness of EPIs is greatly affected by mutations in different locations, and that binding of EPIs is partly attributed by spatial characteristics. These results should be taken into account for new inhibitor and drug discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多药转运体ABCB1(MDR1,Pgp)在药物吸收中起着重要作用,分布,新陈代谢,和消除广泛的药物化合物。ABCB1表达的功能研究在许多疾病中也是必不可少的。包括耐药癌症,炎症条件,或者阿尔茨海默病。在这项研究中,我们研究了ABCB1多药转运蛋白与一组市售活性染料的潜在相互作用,这些染料通常被认为不会渗透到完整细胞中.这里,我们证明ABCB1依赖性染料挤出强烈抑制了TO-PRO™-1(TP1)或TO-PRO™-3(TP3)的缓慢细胞积累。TP1/3染料的积累不受ABCC1或ABCG2的影响,而这种吸收通过特定的P-糖蛋白抑制剂增加到ABCB1阴性细胞的水平,塔基达.我们建议TP化合物可以作为高度敏感的,选择性,无毒,和稳定的染料,以检查ABCB1多药转运蛋白的功能表达和性质,特别是在基于微孔板的高通量流式细胞术测定中。此外,我们证明了TP染料有效选择和分离甚至非常低数量的表达Pgp的完整细胞的适用性。
    The multidrug transporter ABCB1 (MDR1, Pgp) plays an important role in the absorption, distribution, metabolism, and elimination of a wide range of pharmaceutical compounds. Functional investigation of the ABCB1 expression is also essential in many diseases, including drug-resistant cancer, inflammatory conditions, or Alzheimer disease. In this study, we examined the potential interaction of the ABCB1 multidrug transporter with a group of commercially available viability dyes that are generally considered not to penetrate into intact cells. Here, we demonstrate that the slow cellular accumulation of TO-PRO™-1 (TP1) or TO-PRO™-3 (TP3) was strongly inhibited by ABCB1-dependent dye extrusion. TP1/3 dye accumulation was not affected by the presence of ABCC1 or ABCG2, while this uptake was increased to the level in the ABCB1-negative cells by a specific P-glycoprotein inhibitor, Tariquidar. We suggest that TP compounds can be used as highly sensitive, selective, non-toxic, and stable dyes to examine the functional expression and properties of the ABCB1 multidrug transporter, especially in microplate-based high-throughput flow cytometry assays. In addition, we demonstrate the applicability of the TP dyes to efficiently select and separate even a very low number of Pgp-expressing intact cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    侵袭性真菌感染,对人类健康构成严重威胁,越来越多地与高死亡率和医疗费用相关,由于对当前抗真菌药物的抗性上升和多重耐药真菌物种的出现。光滑念珠菌是念珠菌血流感染的第二至第四常见原因。它很容易对两种主流药物产生抗药性,唑(抑制麦角固醇生物合成)和棘白菌素(靶细胞壁),在临床环境中,其固有的低唑敏感性使抗真菌治疗在许多情况下不成功。这里,我们证明了SET{杂色3至9的抑制器[Su(var)3-9]的关键作用,zeste的增强剂[E(z)],和含三thorax(Trx)}结构域的蛋白质,CgSet4,通过主转录因子CgPdr1和CgUpc2A对多药转运蛋白编码和麦角甾醇生物合成(ERG)基因的负调控,在唑和棘白菌素耐药性中,分别。RNA-Seq分析显示C.glabrata通过下调和上调ERG和细胞壁组织基因来响应卡泊芬净(CSP;棘白菌素抗真菌药)胁迫,分别。尽管CgSet4通过CgUPC2A转录下调作为麦角甾醇生物合成途径的阻遏物,CSP诱导的ERG基因抑制不依赖于CgSet4,因为CgSet4在CSP处理的细胞中显示CgUPC2A启动子上的丰度减少。此外,我们显示了麦角甾醇生物合成途径的最后三种酶的作用,CgErg3,CgErg5和CgErg4在抗真菌药敏和毒力中的作用。glabrata.总之,我们的研究结果揭示了麦角甾醇生物合成与棘白菌素耐药性之间的联系,并对联合抗真菌治疗具有意义。
    Invasive fungal infections, which pose a serious threat to human health, are increasingly associated with a high mortality rate and elevated health care costs, owing to rising resistance to current antifungals and emergence of multidrug-resistant fungal species. Candida glabrata is the second to fourth common cause of Candida bloodstream infections. Its high propensity to acquire resistance toward two mainstream drugs, azoles (inhibit ergosterol biosynthesis) and echinocandins (target cell wall), in clinical settings, and its inherent low azole susceptibility render antifungal therapy unsuccessful in many cases. Here, we demonstrate a pivotal role for the SET {suppressor of variegation 3 to 9 [Su(var)3-9], enhancer of zeste [E(z)], and trithorax (Trx)} domain-containing protein, CgSet4, in azole and echinocandin resistance via negative regulation of multidrug transporter-encoding and ergosterol biosynthesis (ERG) genes through the master transcriptional factors CgPdr1 and CgUpc2A, respectively. RNA-Seq analysis revealed that C. glabrata responds to caspofungin (CSP; echinocandin antifungal) stress by downregulation and upregulation of ERG and cell wall organization genes, respectively. Although CgSet4 acts as a repressor of the ergosterol biosynthesis pathway via CgUPC2A transcriptional downregulation, the CSP-induced ERG gene repression is not dependent on CgSet4, as CgSet4 showed diminished abundance on the CgUPC2A promoter in CSP-treated cells. Furthermore, we show a role for the last three enzymes of the ergosterol biosynthesis pathway, CgErg3, CgErg5, and CgErg4, in antifungal susceptibility and virulence in C. glabrata. Altogether, our results unveil the link between ergosterol biosynthesis and echinocandin resistance and have implications for combination antifungal therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小型多药耐药(SMR)家族由广泛的微生物膜蛋白组成,这些蛋白具有不同的转运功能。已经确定了四种功能性SMR亚型,以不同的方式运输小的,带电代谢物胍,庞大的疏水性药物和防腐剂,多胺,和糖脂穿过膜双层。运输者拥有极简主义的建筑,具有〜100个残基的亚基,需要组装成同二聚体或异二聚体进行运输。部分原因是它们的结构简单,SMR是生化和生物物理分析的易于处理的系统。在过去的25年中,对SMR转运蛋白的研究对不同领域产生了深刻的见解,包括膜蛋白拓扑结构和进化,膜运输的机制,和细菌多药耐药性。这里,我们回顾了在理解SMR转运蛋白的结构和功能方面的最新进展。代表四个功能亚型中的两个的SMR的新分子结构揭示了保守的结构特征,这些特征允许SMR家族中出现不同的底物转运功能,并阐明了与遥远相关的膜转运蛋白家族的结构相似性。SLC35/DMT。
    The small multidrug resistance (SMR) family is composed of widespread microbial membrane proteins that fulfill different transport functions. Four functional SMR subtypes have been identified, which variously transport the small, charged metabolite guanidinium, bulky hydrophobic drugs and antiseptics, polyamines, and glycolipids across the membrane bilayer. The transporters possess a minimalist architecture, with ∼100-residue subunits that require assembly into homodimers or heterodimers for transport. In part because of their simple construction, the SMRs are a tractable system for biochemical and biophysical analysis. Studies of SMR transporters over the last 25 years have yielded deep insights for diverse fields, including membrane protein topology and evolution, mechanisms of membrane transport, and bacterial multidrug resistance. Here, we review recent advances in understanding the structures and functions of SMR transporters. New molecular structures of SMRs representing two of the four functional subtypes reveal the conserved structural features that have permitted the emergence of disparate substrate transport functions in the SMR family and illuminate structural similarities with a distantly related membrane transporter family, SLC35/DMT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在医学真菌学中,表观遗传机制正在成为真菌生物学多个方面的关键调节因子,从发育开始,抗真菌药物抗性的表型和形态可塑性。对用于治疗侵袭性真菌感染的有限治疗选择的新兴抗性日益受到关注。人类真菌病原体通过多种机制产生耐药性,最近的研究强调了涉及组蛋白乙酰化和甲基化的表观遗传变化的作用,染色质重塑和基于异染色质的基因沉默,在获得抗真菌耐药性方面。全面了解病原体如何获得耐药性将有助于开发新的抗真菌疗法,并通过阻断常见的耐药机制来提高当前抗真菌药物的疗效。在这篇文章中,我们描述了影响对广泛使用的系统性抗真菌药物的抗性的表观遗传机制:唑类,棘白菌素和多烯。此外,我们回顾了有关DNA错配修复之间可能联系的文献,基因沉默和耐药机制。
    In medical mycology, epigenetic mechanisms are emerging as key regulators of multiple aspects of fungal biology ranging from development, phenotypic and morphological plasticity to antifungal drug resistance. Emerging resistance to the limited therapeutic options for the treatment of invasive fungal infections is a growing concern. Human fungal pathogens develop drug resistance via multiple mechanisms, with recent studies highlighting the role of epigenetic changes involving the acetylation and methylation of histones, remodeling of chromatin and heterochromatin-based gene silencing, in the acquisition of antifungal resistance. A comprehensive understanding of how pathogens acquire drug resistance will aid the development of new antifungal therapies as well as increase the efficacy of current antifungals by blocking common drug-resistance mechanisms. In this article, we describe the epigenetic mechanisms that affect resistance towards widely used systemic antifungal drugs: azoles, echinocandins and polyenes. Additionally, we review the literature on the possible links between DNA mismatch repair, gene silencing and drug-resistance mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号