multi-omics data

多组数据
  • 文章类型: Journal Article
    多种类型的组学数据包含大量反映临床样本不同方面的生物医学信息。多组学整合分析更有可能导致更准确的临床决策。现有的基于多组学数据集成的癌症诊断方法主要集中在模型的分类精度,而忽略了内部机制的可解释性和结果的可靠性,这在精准医学和生命科学等特定领域至关重要。为了克服这个限制,我们提出了一个值得信赖的用于癌症诊断的多组学动态学习框架(TMODINET)。该框架采用多组学自适应动态学习来处理每个样本,以通过使用特征和模式的自我注意学习来提供以患者为中心的人格诊断。为了很好地表征样本之间的相关性,针对特定的图卷积网络(GCN)学习,介绍了一种图动态学习方法,该方法可以根据特定的分类结果自适应调整图的结构。此外,我们通过采用Dirichlet分布和Dempster-Shafer理论来利用不确定性机制来获得不确定性并在决策层面整合多组学数据,确保癌症诊断值得信赖。对四个真实世界的多模式医疗数据集进行了广泛的实验。与最先进的方法相比,我们提出的算法的优越性能和可信性得到了明确的验证。我们的模型具有很大的临床诊断潜力。
    Multiple types of omics data contain a wealth of biomedical information which reflect different aspects of clinical samples. Multi-omics integrated analysis is more likely to lead to more accurate clinical decisions. Existing cancer diagnostic methods based on multi-omics data integration mainly focus on the classification accuracy of the model, while neglecting the interpretability of the internal mechanism and the reliability of the results, which are crucial in specific domains such as precision medicine and the life sciences. To overcome this limitation, we propose a trustworthy multi-omics dynamic learning framework (TMODINET) for cancer diagnostic. The framework employs multi-omics adaptive dynamic learning to process each sample to provide patient-centered personality diagnosis by using self-attentional learning of features and modalities. To characterize the correlation between samples well, we introduce a graph dynamic learning method which can adaptively adjust the graph structure according to the specific classification results for specific graph convolutional networks (GCN) learning. Moreover, we utilize an uncertainty mechanism by employing Dirichlet distribution and Dempster-Shafer theory to obtain uncertainty and integrate multi-omics data at the decision level, ensuring trustworthy for cancer diagnosis. Extensive experiments on four real-world multimodal medical datasets are conducted. Compared to state-of-the-art methods, the superior performance and trustworthiness of our proposed algorithm are clearly validated. Our model has great potential for clinical diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:癌症亚型的准确识别对于疾病预后评估和个性化患者管理至关重要。计算方法的最新进展表明,多组数据为肿瘤分子分型提供了有价值的见解。然而,数据的高维度和小样本量可能导致聚类过程中癌症亚型的模糊和重叠.在这项研究中,我们提出了一种新的基于对比学习的方法来解决这个问题。提出的端到端深度学习方法可以通过自监督学习从多组学特征中提取关键信息,用于患者聚类。
    结果:通过将我们的方法应用于九个公共癌症数据集,与现有方法相比,我们在分离不同生存结局的患者方面表现优异(p<0.05).为了进一步评估各种组学数据对癌症生存率的影响,我们开发了一个XGBoost分类模型,发现mRNA的重要性得分最高,其次是DNA甲基化和miRNA。在提出的案例研究中,我们的方法成功地对亚型进行了聚类,并鉴定了14个癌症相关基因,其中12例(85.7%)通过文献综述得到验证.
    结论:我们的研究结果表明,我们的方法能够识别具有统计学和生物学意义的癌症亚型。关于COLCS的代码在以下位置给出:https://github.com/Mercuriio/COLCS。
    BACKGROUND: Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering.
    RESULTS: By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review.
    CONCLUSIONS: Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:基于多组学数据的预测建模,其中包含了同一患者的几种类型的组学数据,已经显示出优于单组学预测建模的潜力。该领域的大多数研究都集中在合并多种数据类型,尽管购买它们的复杂性和成本。普遍的假设是,增加数据类型的数量必然会提高预测性能。然而,信息较少或冗余的数据类型的集成可能会阻碍这种性能。因此,确定能够增强预测性能的最有效的组学数据类型组合对于经济高效且准确的预测至关重要。
    方法:在本研究中,我们系统地评估了所有31种可能组合的预测性能,包括五种基因组数据类型中的至少一种(mRNA,miRNA,甲基化,DNAseq,和拷贝数变异)使用14个癌症数据集,具有右删失的生存结果,可从TCGA数据库公开获得。我们在每个模型中都采用了各种预测方法和加权的临床数据,以利用它们的预测重要性。Harrell的C指数和综合Brier评分被用作绩效指标。为了评估我们发现的稳健性,我们在包含的数据集级别进行了自举分析.对关键结果进行了统计检验,限制测试的数量,以确保低风险的假阳性。
    结果:与预期相反,我们发现,对于大多数癌症类型,仅使用mRNA数据或mRNA和miRNA数据的组合就足够了.对于某些癌症类型,额外纳入甲基化数据可改善预测结果.远远没有提高性能,引入更多数据类型通常会导致性能下降,这两种绩效指标之间的差异。
    结论:我们的发现挑战了普遍的观点,即在多组生存预测中结合多种组学数据类型可提高预测性能。因此,应该重新考虑在多组学预测中纳入尽可能多的数据类型的广泛方法,以避免次优的预测结果和不必要的支出.
    BACKGROUND: Predictive modeling based on multi-omics data, which incorporates several types of omics data for the same patients, has shown potential to outperform single-omics predictive modeling. Most research in this domain focuses on incorporating numerous data types, despite the complexity and cost of acquiring them. The prevailing assumption is that increasing the number of data types necessarily improves predictive performance. However, the integration of less informative or redundant data types could potentially hinder this performance. Therefore, identifying the most effective combinations of omics data types that enhance predictive performance is critical for cost-effective and accurate predictions.
    METHODS: In this study, we systematically evaluated the predictive performance of all 31 possible combinations including at least one of five genomic data types (mRNA, miRNA, methylation, DNAseq, and copy number variation) using 14 cancer datasets with right-censored survival outcomes, publicly available from the TCGA database. We employed various prediction methods and up-weighted clinical data in every model to leverage their predictive importance. Harrell\'s C-index and the integrated Brier Score were used as performance measures. To assess the robustness of our findings, we performed a bootstrap analysis at the level of the included datasets. Statistical testing was conducted for key results, limiting the number of tests to ensure a low risk of false positives.
    RESULTS: Contrary to expectations, we found that using only mRNA data or a combination of mRNA and miRNA data was sufficient for most cancer types. For some cancer types, the additional inclusion of methylation data led to improved prediction results. Far from enhancing performance, the introduction of more data types most often resulted in a decline in performance, which varied between the two performance measures.
    CONCLUSIONS: Our findings challenge the prevailing notion that combining multiple omics data types in multi-omics survival prediction improves predictive performance. Thus, the widespread approach in multi-omics prediction of incorporating as many data types as possible should be reconsidered to avoid suboptimal prediction results and unnecessary expenditure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结直肠癌是世界上最常见的癌症之一,这对人们的健康是一个严重的威胁。SMAD4属于矮人/SMAD家族,在TGF-β和BMP信号通路中起着至关重要的作用。由于SMAD4突变后结肠癌患者的分子特征仍不清楚,我们整合了SMAD4突变患者的多组学数据,以揭示SMAD4突变的分子特征谱.错义突变是SMAD4最常见的突变型。SMAD4突变患者的生存率较差。携带SMAD4突变患者的肿瘤组织显示各种免疫细胞减少,如CD4+记忆T细胞和记忆B细胞。与SMAD4无突变组相比,鉴定了许多差异基因,并且可以显着富集肿瘤和免疫相关的信号通路。此外,突变组比非突变组具有不同的药物敏感性.
    Colorectal cancer is one of the most common cancers around the world, which is a severe threat to people\'s health. SMAD4 belongs to the dwarfin/SMAD family, which plays a crucial role in TGF-β and BMP signal pathways. As the molecular characterization of colon cancer patients following SMAD4 mutations remains unclear, we integrated multi-omics data of SMAD4 mutant patients to reveal the profile of molecular characterization of SMAD4 mutation. A missense mutation is the most common mutant type of SMAD4. Patients with SMAD4 mutation had worse survival. Tumor tissues from patients carrying the SMAD4 mutation showed a reduction in various immune cells, such as CD4 + memory T cells and memory B cells. Many differential genes were identified compared to the SMAD4 mutation-free group and could be significantly enriched for tumor- and immune-related signaling pathways. In addition, the mutant group had different drug sensitivities than the non-mutant group.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:用于药物疾病预测的计算技术对于增强药物发现和重新定位至关重要。虽然许多方法利用来自各种生物数据库的多模态网络,很少集成全面的多组学数据,包括转录组,蛋白质组,和代谢组。我们介绍STRGNN,一种新颖的图形深度学习方法,使用包含蛋白质的广泛多模式网络预测药物-疾病关系,RNA,代谢物,和化合物。我们构建了一个包含多组数据的详细数据集,并开发了一种具有拓扑正则化的学习算法。该算法选择性地利用信息模态,同时过滤掉冗余。
    结果:与现有方法相比,STRGNN显示出更高的准确性,并已确定了几种新的药物作用,证实现有文献。STRGNN成为药物预测和发现的强大工具。STRGNN的源代码,连同绩效评估的数据集,可在https://github.com/yuto-ohnuki/STRGNN获得。git.
    BACKGROUND: Computational techniques for drug-disease prediction are essential in enhancing drug discovery and repositioning. While many methods utilize multimodal networks from various biological databases, few integrate comprehensive multi-omics data, including transcriptomes, proteomes, and metabolomes. We introduce STRGNN, a novel graph deep learning approach that predicts drug-disease relationships using extensive multimodal networks comprising proteins, RNAs, metabolites, and compounds. We have constructed a detailed dataset incorporating multi-omics data and developed a learning algorithm with topological regularization. This algorithm selectively leverages informative modalities while filtering out redundancies.
    RESULTS: STRGNN demonstrates superior accuracy compared to existing methods and has identified several novel drug effects, corroborating existing literature. STRGNN emerges as a powerful tool for drug prediction and discovery. The source code for STRGNN, along with the dataset for performance evaluation, is available at https://github.com/yuto-ohnuki/STRGNN.git .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多组学数据的整合提供了一种强大的方法来理解疾病的复杂性,通过组合来自不同生物学水平的信息,比如基因组学,转录组学,蛋白质组学,和代谢组学。这种综合方法对于全面了解疾病机制以及制定更有效的诊断和治疗策略至关重要。然而,当前的大多数方法都无法有效地从组学数据中提取共享和特定的表示。本研究引入MOSDNET,一个多组学分类框架,有效地提取共享和特定的表示。该框架利用简化的多视图深度判别表示学习(S-MDDR)和动态边缘GCN(DEGCN)来提高疾病分类的准确性和效率。最初,MOSDNET利用S-MDDR建立相似性和正交约束来提取这些表示,然后将它们连接起来以整合多组学数据。随后,MOSDNET通过采用患者相似性网络来构建样本数据的综合视图。通过将相似性网络整合到DEGCN中,MOSDNET学习复杂的网络结构和节点表示,从而实现卓越的分类结果。MOSDNET是通过多任务学习方法训练的,有效地利用来自数据集成和分类组件的互补知识。在进行了广泛的比较实验后,我们已经得出结论,MOSDNET在分类准确性方面优于领先的先进的多组学分类模型。同时,我们使用MOSDNET来识别多组数据中的关键生物标志物,提供对疾病病因和进展的见解。
    The integration of multi-omics data offers a robust approach to understanding the complexity of diseases by combining information from various biological levels, such as genomics, transcriptomics, proteomics, and metabolomics. This integrated approach is essential for a comprehensive understanding of disease mechanisms and for developing more effective diagnostic and therapeutic strategies. Nevertheless, most current methodologies fail to effectively extract both shared and specific representations from omics data. This study introduces MOSDNET, a multi-omics classification framework that effectively extracts shared and specific representations. This framework leverages Simplified Multi-view Deep Discriminant Representation Learning (S-MDDR) and Dynamic Edge GCN (DEGCN) to enhance the accuracy and efficiency of disease classification. Initially, MOSDNET utilizes S-MDDR to establish similarity and orthogonal constraints for extracting these representations, which are then concatenated to integrate the multi-omics data. Subsequently, MOSDNET constructs a comprehensive view of the sample data by employing patient similarity networks. By incorporating similarity networks into DEGCN, MOSDNET learns intricate network structures and node representations, which enables superior classification outcomes. MOSDNET is trained through a multitask learning approach, effectively leveraging the complementary knowledge from both the data integration and classification components. After conducting extensive comparative experiments, we have conclusively demonstrated that MOSDNET outperforms leading state-of-the-art multi-omics classification models in terms of classification accuracy. Simultaneously, we employ MOSDNET to identify pivotal biomarkers within the multi-omics data, providing insights into disease etiology and progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    简介:开发有效的乳腺癌生存预测模型对乳腺癌预后至关重要。随着新一代测序技术的广泛应用,许多研究都集中在生存预测上。然而,以前的方法主要依赖于单组学数据,而使用多组学数据进行生存预测仍然是一个重大挑战。方法:在本研究中,考虑到患者的相似性和多组数据的相关性,我们提出了一种基于堆叠策略的新型多组学堆叠融合网络(MSFN)来预测乳腺癌患者的生存率.MSFN首先构建患者相似性网络(PSN),并采用残差图神经网络(ResGCN)从PSN获得相关预后信息。同时,它采用卷积神经网络(CNN)从多组数据中获得特异性预后信息。最后,MSFN将来自这些网络的预后信息堆叠起来,并输入AdaboostRF进行生存预测。结果:实验结果表明,我们的方法优于几种最先进的方法,并通过Kaplan-Meier和t-SNE进行生物学验证。
    Introduction: Developing effective breast cancer survival prediction models is critical to breast cancer prognosis. With the widespread use of next-generation sequencing technologies, numerous studies have focused on survival prediction. However, previous methods predominantly relied on single-omics data, and survival prediction using multi-omics data remains a significant challenge. Methods: In this study, considering the similarity of patients and the relevance of multi-omics data, we propose a novel multi-omics stacked fusion network (MSFN) based on a stacking strategy to predict the survival of breast cancer patients. MSFN first constructs a patient similarity network (PSN) and employs a residual graph neural network (ResGCN) to obtain correlative prognostic information from PSN. Simultaneously, it employs convolutional neural networks (CNNs) to obtain specificity prognostic information from multi-omics data. Finally, MSFN stacks the prognostic information from these networks and feeds into AdaboostRF for survival prediction. Results: Experiments results demonstrated that our method outperformed several state-of-the-art methods, and biologically validated by Kaplan-Meier and t-SNE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖基转移酶相关基因在肝细胞癌(HCC)的发病机制中起着至关重要的作用。这项研究调查了它们对肿瘤微环境和分子机制的影响,提供对肝癌创新免疫治疗策略的见解。
    我们利用尖端的单细胞和空间转录组学来检查HCC异质性。采用四种单细胞评分技术来评估糖基转移酶基因。空间转录组的发现得到了验证,进行了大量RNA-seq分析,以确定预后糖基转移酶相关基因和潜在的免疫治疗靶标.通过各种功能测定进一步探讨了MGAT1的作用。
    我们的分析揭示了肝癌中不同的细胞亚群具有不同的糖基转移酶基因活性,特别是在巨噬细胞中。鉴定了对巨噬细胞特异的关键糖基转移酶基因。时间分析显示肿瘤进展过程中巨噬细胞的进化,而空间转录组学强调了这些基因在核心肿瘤巨噬细胞中的表达减少。整合scRNA-seq,批量RNA-seq,和空间转录组学,MGAT1成为一个有前途的治疗靶点,在肝癌免疫治疗中显示出显著的潜力。
    这项全面的研究探讨了肝细胞癌的糖基转移酶相关基因,阐明它们在细胞动力学和免疫细胞相互作用中的关键作用。我们的发现为免疫治疗干预和个性化HCC管理开辟了新的途径,推动肝癌免疫治疗的界限。
    UNASSIGNED: Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC.
    UNASSIGNED: We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1\'s role was further explored through various functional assays.
    UNASSIGNED: Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy.
    UNASSIGNED: This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: English Abstract
    基于多维多目标生物网络的系统解构,模块化药理学解释了疾病的复杂机制和多靶点药物的相互作用。在疾病的发病机制方面取得了进展,疾病的生物学基础和中医证候,多靶点草药的药理机制,公式的兼容性,中药复方新药的发现。然而,多组学数据和生物网络的复杂性给药物网络的模块化解构和分析带来了挑战。这里,我们构建了模块化药理学计算平台在线分析系统,可以实现网络建设的功能,模块识别,模块判别分析,集线器模块分析,模块内和模块间关系分析,以及基于定量表达谱和蛋白质-蛋白质相互作用(PPI)数据的网络拓扑可视化。该工具为通过模块化药理学研究复杂疾病和多靶点药物机制提供了强大的工具。该平台在疾病模块化识别和关联机制方面可能具有广泛的应用,解释中医科学原理,分析中药和配方的复杂机制,多靶点药物的发现。
    Based on the systematic deconstruction of multi-dimensional and multi-target biological networks, modular pharmacology explains the complex mechanism of diseases and the interactions of multi-target drugs. It has made progress in the fields of pathogenesis of disease, biological basis of disease and traditional Chinese medicine(TCM) syndrome, pharmacological mechanism of multi-target herbs, compatibility of formulas, and discovery of new drug of TCM compound. However, the complexity of multi-omics data and biological networks brings challenges to the modular deconstruction and analysis of the drug networks. Here, we constructed the "Computing Platform for Modular Pharmacology" online analysis system, which can implement the function of network construction, module identification, module discriminant analysis, hub-module analysis, intra-module and inter-module relationship analysis, and topological visualization of network based on quantitative expression profiles and protein-protein interaction(PPI) data. This tool provides a powerful tool for the research on complex diseases and multi-target drug mechanisms by means of modular pharmacology. The platform may have broad range of application in disease modular identification and correlation mechanism, interpretation of scientific principles of TCM, analysis of complex mechanisms of TCM and formulas, and discovery of multi-target drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:肺腺癌(LUAD)是非小细胞肺癌最常见的亚型。了解肿瘤进展的分子机制具有重要的临床意义。本研究旨在鉴定与LUAD亚型相关的新型分子标记,以提高LUAD亚型分类的精度为目标。此外,优化工作旨在从患者生存分析的角度增强洞察力。
    方法:我们提出了一种创新的特征选择方法,该方法侧重于LUAD分类,这是全面和强大的。所提出的方法整合了来自癌症基因组图谱(TCGA)的多组学数据,并利用了最大相关性和最小冗余的协同组合,最小绝对收缩和选择运算符,和Boruta算法。这些选定的特征被部署在六个机器学习分类器中:逻辑回归,随机森林,支持向量机,天真的贝叶斯,k-最近邻居,XGBoost
    结果:所提出的方法实现了LR的0.9958的接收器工作特征曲线下面积(AUC)。值得注意的是,包含拷贝数的复合模型的准确性和AUC,甲基化,以及外显子表达的RNA测序数据,基因,和miRNA成熟链超过了具有单组学数据或其他多组学组合的模型的准确性和AUC指标。生存分析,揭示了SVM分类器的最佳分类,表现优于TCGA。为了增强模型的可解释性,利用SHapley加法扩张(SHAP)值来阐明每个特征对预测的影响。基因本体论(GO)富集分析确定了重要的生物过程,分子功能,和与LUAD亚型相关的细胞成分。
    结论:总之,我们的特征选择过程,基于TCGA多组数据,结合多个机器学习分类器,熟练地鉴定了肺腺癌的分子亚型及其相应的重要基因。我们的方法可以增强LUAD的早期发现和诊断,加快靶向治疗的发展,最终,延长患者生存时间。
    OBJECTIVE: Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Understanding the molecular mechanisms underlying tumor progression is of great clinical significance. This study aims to identify novel molecular markers associated with LUAD subtypes, with the goal of improving the precision of LUAD subtype classification. Additionally, optimization efforts are directed towards enhancing insights from the perspective of patient survival analysis.
    METHODS: We propose an innovative feature-selection approach that focuses on LUAD classification, which is comprehensive and robust. The proposed method integrates multi-omics data from The Cancer Genome Atlas (TCGA) and leverages a synergistic combination of max-relevance and min-redundancy, least absolute shrinkage and selection operator, and Boruta algorithms. These selected features were deployed in six machine-learning classifiers: logistic regression, random forest, support vector machine, naive Bayes, k-Nearest Neighbor, and XGBoost.
    RESULTS: The proposed approach achieved an area under the receiver operating characteristic curve (AUC) of 0.9958 for LR. Notably, the accuracy and AUC of a composite model incorporating copy number, methylation, as well as RNA- sequencing data for expression of exons, genes, and miRNA mature strands surpassed the accuracy and AUC metrics of models with single-omics data or other multi-omics combinations. Survival analyses, revealed the SVM classifier to elicit optimal classification, outperforming that achieved by TCGA. To enhance model interpretability, SHapley Additive exPlanations (SHAP) values were utilized to elucidate the impact of each feature on the predictions. Gene Ontology (GO) enrichment analysis identified significant biological processes, molecular functions, and cellular components associated with LUAD subtypes.
    CONCLUSIONS: In summary, our feature selection process, based on TCGA multi-omics data and combined with multiple machine learning classifiers, proficiently identifies molecular subtypes of lung adenocarcinoma and their corresponding significant genes. Our method could enhance the early detection and diagnosis of LUAD, expedite the development of targeted therapies and, ultimately, lengthen patient survival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号