mouse embryonic stem cells

小鼠胚胎干细胞
  • 文章类型: Journal Article
    多能小鼠胚胎干细胞(ESC)可以分化为所有胚层,并作为胚胎发育的体外模型。为了更好地理解ESC致力于不同谱系的分化路径,我们通过延时成像和多重高维成像质谱细胞计数(IMC)蛋白质定量来追踪个体分化的ESCs.这将5-6代的连续活单细胞分子NANOG和细胞动力学定量与观察终点相同单细胞中37种不同分子调节剂的蛋白质表达联系起来。使用这个独特的数据集,包括亲属关系历史和实时谱系标记检测,我们表明,NANOG下调发生在几代人之前,但不足以用于神经外胚层标记物Sox1的上调。我们鉴定了在体外共表达经典Sox1神经外胚层和FoxA2内胚层标志物的发育细胞类型,并确认了植入后胚胎中此类群体的存在。RNASeq揭示共表达SOX1和FOXA2的细胞具有独特的细胞状态,其特征在于内胚层和神经外胚层基因的表达,表明对两个胚层的谱系潜力。
    Pluripotent mouse embryonic stem cells (ESCs) can differentiate to all germ layers and serve as an in vitro model of embryonic development. To better understand the differentiation paths traversed by ESCs committing to different lineages, we track individual differentiating ESCs by timelapse imaging followed by multiplexed high-dimensional Imaging Mass Cytometry (IMC) protein quantification. This links continuous live single-cell molecular NANOG and cellular dynamics quantification over 5-6 generations to protein expression of 37 different molecular regulators in the same single cells at the observation endpoints. Using this unique data set including kinship history and live lineage marker detection, we show that NANOG downregulation occurs generations prior to, but is not sufficient for neuroectoderm marker Sox1 upregulation. We identify a developmental cell type co-expressing both the canonical Sox1 neuroectoderm and FoxA2 endoderm markers in vitro and confirm the presence of such a population in the post-implantation embryo. RNASeq reveals cells co-expressing SOX1 and FOXA2 to have a unique cell state characterized by expression of both endoderm as well as neuroectoderm genes suggesting lineage potential towards both germ layers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    天然多能性由包含核心和天然多能性特异性转录因子(TF)的自我增强基因调控网络(GRN)维持。在退出幼稚多能性后,胚胎干细胞(ESC)通过形成后植入样多能状态转变,他们获得血统选择的能力。然而,从幼稚GRN脱离和开始形成性GRN的潜在机制尚不清楚.这里,我们证明磷酸化AKT充当看门人,防止FoxOTFs在幼稚ESC中的核定位。PTEN介导的AKT活性从幼稚多能性退出后的降低允许FoxOTFs的核进入,通过结合和激活形成性多能性特异性增强子来实施细胞命运转变。的确,FoxOTF对于形成性多能性特异性GRN的激活是必要且足够的。我们的工作揭示了FoxOTF在建立形成性植入后多能性方面的关键作用,关键的早期胚胎细胞命运转变。
    Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localisation of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and sufficient for the activation of the formative pluripotency-specific GRN. Our work uncovers a pivotal role for FoxO TFs in establishing formative post-implantation pluripotency, a critical early embryonic cell fate transition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    赖氨酸特异性组蛋白去甲基酶1(LSD1),将单甲基化或二甲基化组蛋白H3在赖氨酸4(H3K4me1/2)上,对早期胚胎发生和发育至关重要。在这里,我们表明LSD1对于小鼠胚胎干细胞(ESC)的自我更新是不必要的,但对于小鼠ESC的生长和分化是必需的。重新引入催化受损的LSD1(LSD1MUT)可以恢复小鼠ESC的增殖能力,然而,LSD1的酶活性对于确保适当的分化至关重要。的确,Lsd1敲除(KO)小鼠ESC中H3K4me1的增加不会导致与干性相关的全局基因表达程序的重大变化。然而,LSD1而非LSD1MUT的消融导致DNMT1和UHRF1蛋白减少,并伴随整体低甲基化.我们表明,LSD1和LSD1MUT都通过与HDAC1和泛素特异性肽酶7(USP7)的相互作用来控制UHRF1和DNMT1的蛋白质稳定性,因此,促进DNMT1和UHRF1的去乙酰化和去泛素化。我们的研究阐明了LSD1控制小鼠ESCDNA甲基化的机制,独立于其赖氨酸脱甲基酶活性。
    Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    个人每天通过各种途径接触各种各样的危险化学品,其中许多尚未进行全面的毒性评估。虽然涉及怀孕动物的传统发育毒性测试以其可靠性而闻名,它们还与高成本和时间要求有关。因此,迫切需要替代方案,成本效益高,和快速体外测试方法。这项研究旨在通过引入384超低附着孔格式的小鼠胚状体测试(EBT)模型来解决与自动化和简化化学物质早期发育毒性筛选相关的挑战。通过RNA-seq分析,以这种形式产生的胚状体(EB)的特征在于自发分化为心脏中胚层的轨迹。使用ICHS5(R3)指南和先前研究中建议的参考化合物评估预测准确性,从而建立了EBT模型的接受标准和适用性领域。结果表明,在预测23个阳性和9个阴性参考化合物的发育毒性方面,准确率为84.38%,优化的截止阈值为750µM。总的来说,开发的EBT模型提出了一种更有前途的方法,高通量化学筛选,从而促进环境管理和安全评估中明智的决策。
    Individuals are exposed to a wide arrays of hazardous chemicals on a daily basis through various routes, many of which have not undergone comprehensive toxicity assessments. While traditional developmental toxicity tests involving pregnant animals are known for their reliability, they are also associated with high costs and time requirements. Consequently, there is an urgent demand for alternative, cost-efficient, and rapid in vitro testing methods. This study aims to address the challenges related to automating and streamlining the screening of early developmental toxicity of chemicals by introducing a mouse embryoid body test (EBT) model in a 384-ultra low attachment well format. Embryoid bodies (EBs) generated in this format were characterized by a spontaneous differentiation trajectory into cardiac mesoderm by as analyzed by RNA-seq. Assessing prediction accuracy using reference compounds suggested in the ICH S5(R3) guideline and prior studies resulted in the establishment of the acceptance criteria and applicability domain of the EBT model. The results indicated an 84.38% accuracy in predicting the developmental toxicity of 23 positive and 9 negative reference compounds, with an optimized cutoff threshold of 750 µM. Overall, the developed EBT model presents a promising approach for more rapid, high-throughput chemical screening, thereby facilitating well-informed decision-making in environmental management and safety assessments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    组蛋白修饰与不同的转录状态相关,但尚不清楚它们是否指导基因表达。为了调查这一点,我们在小鼠胚胎干细胞(mESCs)中突变组蛋白H3.3K9和K27残基。这里,我们发现H3.3K9对于控制特定的远端基因间区域和在启动子处适当的H3K27me3沉积至关重要。H3.3K9A突变导致包含内源性逆转录病毒的区域的H3K9me3减少,并诱导H3K27ac的获得和新生转录。染色质环境的这些变化释放了隐秘的增强剂,导致激活独特的转录程序,并最终导致蛋白质表达,通常仅限于专门的免疫细胞类型。H3.3K27A突变体破坏了抑制性H3K27me3标记的沉积和扩散,特别是在启动子处具有较高的H3.3基础水平的二价基因。因此,H3.3K9和K27在顺式调节元件和二价启动子上关键地协调抑制性染色质状态,分别,并指导mESC的正确转录。
    Histone modifications are associated with distinct transcriptional states, but it is unclear whether they instruct gene expression. To investigate this, we mutate histone H3.3 K9 and K27 residues in mouse embryonic stem cells (mESCs). Here, we find that H3.3K9 is essential for controlling specific distal intergenic regions and for proper H3K27me3 deposition at promoters. The H3.3K9A mutation resulted in decreased H3K9me3 at regions encompassing endogenous retroviruses and induced a gain of H3K27ac and nascent transcription. These changes in the chromatin environment unleash cryptic enhancers, resulting in the activation of distinctive transcriptional programs and culminating in protein expression normally restricted to specialized immune cell types. The H3.3K27A mutant disrupts the deposition and spreading of the repressive H3K27me3 mark, particularly impacting bivalent genes with higher basal levels of H3.3 at promoters. Therefore, H3.3K9 and K27 crucially orchestrate repressive chromatin states at cis-regulatory elements and bivalent promoters, respectively, and instruct proper transcription in mESCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色质调节因子改变染色质的物理性质,使其或多或少允许转录,通过改变核小体占用或特定基因座的组蛋白修饰来调节另一种蛋白质对特定DNA序列的访问。哺乳动物SWI/SNF复合物是一组ATP酶依赖性染色质重塑剂。在小鼠胚胎干细胞中,mSWI/SNF有三种主要形式:规范BAF(cBAF),多溴相关BAF(pBAF),和GLTSCR相关的BAF(gBAF)。Nkx2-9是二价的,意味着基因座处的核小体具有活性和抑制修饰。在这项研究中,我们使用dCas9介导的诱导型募集(FIRE-Cas9),使用独特的BAF亚基将三种复合物中的每一种募集至Nkx2-9.我们表明,cBAF复合物的募集导致polycomb抑制-2H3K27me3组蛋白标记和polycomb抑制-1和抑制-2复合蛋白的显着丧失,而gBAF和pBAF没有。此外,核小体占据不能单独解释这些标记的丢失。我们的结果表明,cBAF在gBAF和pBAF不共享的多梳相关组蛋白修饰的直接对立中具有独特的作用。
    Chromatin regulators alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein\'s access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes are a group of ATPase-dependent chromatin remodelers. In mouse embryonic stem cells, there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF). Nkx2-9 is bivalent, meaning nucleosomes at the locus have active and repressive modifications. In this study, we used unique BAF subunits to recruit each of the three complexes to Nkx2-9 using dCas9-mediated inducible recruitment (FIRE-Cas9). We show that recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 histone mark and polycomb repressive-1 and repressive-2 complex proteins, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无义介导的mRNA衰变(NMD)是真核细胞中高度保守的转录后基因表达调控机制。NMD消除了具有过早终止密码子的异常mRNA,以掩盖转录组完整性。此外,NMD通过使具有特定NMD特征的RNA不稳定来微调基因表达。因此,通过控制转录组的质量和数量,NMD在哺乳动物发育中起着至关重要的作用,应激反应,和肿瘤发生。NMD因子的缺乏导致早期胚胎致死,而潜在的机制却知之甚少。SMG5是NMD的关键因素。在这项研究中,我们建立了一个Smg5条件性敲除小鼠模型,发现Smg5-null导致E13.5之前的早期胚胎致死性。此外,我们产生了Smg5敲除小鼠胚胎干细胞(mESC)的多个品系,并发现mESC中Smg5的缺失不会损害细胞活力。Smg5-null延迟mESC的分化。机械上,我们的研究表明,c-MYC蛋白,但不是c-MycmRNA,在SMG5缺陷型mESC中上调。c-MYC蛋白的过量产生可能是由SMG5丢失后的蛋白合成增强引起的。此外,SMG5缺失导致多种干细胞分化调节剂上的选择性剪接失调。总的来说,我们的发现强调了SMG5-NMD在调节mESC细胞状态转换中的重要性.
    Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional gene expression regulatory mechanism in eukaryotic cells. NMD eliminates aberrant mRNAs with premature termination codons to surveil transcriptome integrity. Furthermore, NMD fine-tunes gene expression by destabilizing RNAs with specific NMD features. Thus, by controlling the quality and quantity of the transcriptome, NMD plays a vital role in mammalian development, stress response, and tumorigenesis. Deficiencies of NMD factors result in early embryonic lethality, while the underlying mechanisms are poorly understood. SMG5 is a key NMD factor. In this study, we generated an Smg5 conditional knockout mouse model and found that Smg5-null results in early embryonic lethality before E13.5. Furthermore, we produced multiple lines of Smg5 knockout mouse embryonic stem cells (mESCs) and found that the deletion of Smg5 in mESCs does not compromise cell viability. Smg5-null delays differentiation of mESCs. Mechanistically, our study reveals that the c-MYC protein, but not c-Myc mRNA, is upregulated in SMG5-deficient mESCs. The overproduction of c-MYC protein could be caused by enhanced protein synthesis upon SMG5 loss. Furthermore, SMG5-null results in dysregulation of alternative splicing on multiple stem cell differentiation regulators. Overall, our findings underscore the importance of SMG5-NMD in regulating mESC cell-state transition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类诱导多能干细胞(hiPSC)分化为心肌细胞(CM)已经重塑了研究心脏发育和疾病的方法。在这项研究中,我们在hiPSC到CM分化系统中进行了全基因组CRISPR筛选,并在此揭示了BRD4,溴结构域和外(BET)家族的成员,调节CM分化。在小鼠胚胎干细胞(mESC)衍生或hiPSC衍生的心脏祖细胞(CPC)中对BET蛋白的化学抑制导致CM分化降低和表达祖细胞标记的细胞的持久性。在体内,第二心脏区域(SHF)CPC中的BRD4缺失导致胚胎或出生后早期死亡,突变体表现出心肌发育不全和CPC增加。单细胞转录组学鉴定了对BRD4损失敏感并与减弱的CM谱系特异性基因程序相关的SHFCPCs亚群。这些结果突显了BRD4在发育过程中CM命运确定中的先前未被认可的作用,以及SHFCPC对BRD4的异质性要求。
    Human induced pluripotent stem cell (hiPSC) to cardiomyocyte (CM) differentiation has reshaped approaches to studying cardiac development and disease. In this study, we employed a genome-wide CRISPR screen in a hiPSC to CM differentiation system and reveal here that BRD4, a member of the bromodomain and extraterminal (BET) family, regulates CM differentiation. Chemical inhibition of BET proteins in mouse embryonic stem cell (mESC)-derived or hiPSC-derived cardiac progenitor cells (CPCs) results in decreased CM differentiation and persistence of cells expressing progenitor markers. In vivo, BRD4 deletion in second heart field (SHF) CPCs results in embryonic or early postnatal lethality, with mutants demonstrating myocardial hypoplasia and an increase in CPCs. Single-cell transcriptomics identified a subpopulation of SHF CPCs that is sensitive to BRD4 loss and associated with attenuated CM lineage-specific gene programs. These results highlight a previously unrecognized role for BRD4 in CM fate determination during development and a heterogenous requirement for BRD4 among SHF CPCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胚胎干细胞(ESCs)具有高活性的泛素-蛋白酶体系统-细胞中蛋白质降解的分子机制。包含不同亚基和相互作用调节剂的各种形式的蛋白酶体复合物负责底物选择性和降解。免疫蛋白酶体是这些在抗原呈递中起重要作用的形式之一;然而,最近的大量证据表明它们在多能干细胞中的功能。以前的研究已经建立了三个连续的多能性阶段,以上胚细胞及其培养的对应物为特征:幼稚,形成性,和准备阶段。在这项工作中,我们报告说,免疫蛋白酶体及其伴侣共调节因子在幼稚状态下被抑制,但在多能性连续体的形成阶段容易上调,以上皮样细胞(EpiLCs)为特征。我们的数据为进一步研究免疫蛋白酶体在哺乳动物早期发育过程中调节蛋白质停滞的生物学功能奠定了基础。
    Embryonic stem cells (ESCs) are remarkable for the high activity level of ubiquitin-proteasome system-the molecular machinery of protein degradation in the cell. Various forms of the proteasome complexes comprising different subunits and interacting regulators are responsible for the substrate selectivity and degradation. Immunoproteasomes are amongst these forms which play an important role in antigen presentation; however, a body of recent evidence suggests their functions in pluripotent stem cells. Previous studies have established three consecutive phases of pluripotency, featured by epiblast cells and their cultured counterparts: naïve, formative, and primed phase. In this work, we report that immunoproteasomes and their chaperone co-regulators are suppressed in the naïve state but are readily upregulated in the formative phase of the pluripotency continuum, featured by epiblast-like cells (EpiLCs). Our data lay ground for the further investigation of the biological functions of immunoproteasome in the regulation of proteostasis during early mammalian development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发育过程中基因表达的特异性需要调节结构域的绝缘以避免不适当的增强子-基因相互作用。在脊椎动物中,这种绝缘体功能主要归因于位于拓扑关联域(TAD)边界的CTCF站点簇。然而,TAD边界允许跨监管域的一些物理串扰,这与发育基因的特异性和精确表达不一致。在这里,我们表明发育基因和附近的CTCF位点簇共同促进了调控域的强大绝缘。通过基因解剖小鼠胚胎干细胞中的几个代表性基因座,我们表明,CTCF位点防止不良的增强子-基因接触(即物理绝缘),而发育基因优先通过涉及启动子竞争而不是增强子阻断的非结构机制来促进调节绝缘。总的来说,我们的工作提供了对监管领域绝缘的重要见解,这反过来可能有助于解释某些结构变异的病理后果。
    The specificity of gene expression during development requires the insulation of regulatory domains to avoid inappropriate enhancer-gene interactions. In vertebrates, this insulator function is mostly attributed to clusters of CTCF sites located at topologically associating domain (TAD) boundaries. However, TAD boundaries allow some physical crosstalk across regulatory domains, which is at odds with the specific and precise expression of developmental genes. Here we show that developmental genes and nearby clusters of CTCF sites cooperatively foster the robust insulation of regulatory domains. By genetically dissecting a couple of representative loci in mouse embryonic stem cells, we show that CTCF sites prevent undesirable enhancer-gene contacts (i.e. physical insulation), while developmental genes preferentially contribute to regulatory insulation through non-structural mechanisms involving promoter competition rather than enhancer blocking. Overall, our work provides important insights into the insulation of regulatory domains, which in turn might help interpreting the pathological consequences of certain structural variants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号