motor protein

运动蛋白
  • 文章类型: Journal Article
    驱动蛋白-9家族包含两个特异于纤毛真核细胞的亚家族,由于其在纤毛弯曲和形成中的重要性,最近引起了相当大的关注。然而,关于kinesin-9家族成员的运动特性,只有分散的数据可用;在相同的实验条件下,使用来自同一物种的kinesin-9电动机尚未比较这些特性。这里,我们报道了嗜热四膜虫的两种驱动蛋白-9分子的综合运动特性,TtK9A(Kif9/Klp1直系同源物)和TtK9B1(Kif6直系同源物),使用基于微管的体外测定,包括单运动和多运动测定以及微管刺激的ATP酶测定。两个亚科都表现出微管加端定向,极其缓慢的运动活动,在单个和多个分子中。TtK9A显示比TtK9B1更低的可加工性。我们的发现表明,与低ATP水解率相对应的驱动蛋白9的相当缓慢的运动是睫状驱动蛋白9家族的共同特征。
    The kinesin-9 family comprises two subfamilies specific to ciliated eukaryotic cells, and has recently attracted considerable attention because of its importance in ciliary bending and formation. However, only scattered data are available on the motor properties of kinesin-9 family members; these properties have not been compared under identical experimental conditions using kinesin-9 motors from the same species. Here, we report the comprehensive motor properties of two kinesin-9 molecules of Tetrahymena thermophila, TtK9A (Kif9/Klp1 ortholog) and TtK9B1 (Kif6 ortholog), using microtubule-based in vitro assays, including single-motor and multi-motor assays and microtubule-stimulated ATPase assays. Both subfamilies exhibit microtubule plus-end-directed, extremely slow motor activity, both in single and multiple molecules. TtK9A shows lower processivity than TtK9B1. Our findings indicate that the considerable slow movement of kinesin-9 that corresponds to low ATP hydrolysis rates is a common feature of the ciliary kinesin-9 family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物肌球蛋白比动物肌球蛋白具有更高的速度。其中,Chara属淡水藻类中的肌球蛋白具有极高的速度。我们已经对在藻类Chara中进行高速运动的肌球蛋白进行了生化研究。我们的研究已经阐明了Chara肌球蛋白快速运动的结构和酶学基础。这篇评论概述了导致发现最快肌球蛋白的历史,藻类Chara肌球蛋白XI,和最快肌球蛋白的结构-功能相关性。这篇评论文章是日本文章的扩展版本,伊藤等人的“最快肌球蛋白的结构-功能关系”。,发表在SEIBUTSUBUTSURI卷。63,第91-96页(2023年)。
    Plant myosins have higher velocities than animal myosins. Among them, myosins in freshwater algae of the genus Chara have extremely high velocities. We have biochemically studied myosins that perform high-speed movements in the alga Chara. Our studies have elucidated the structural and enzymatic basis for the fast movement of Chara myosins. This review outlines the history leading to the discovery of the fastest myosin, algae Chara myosin XI, and the structure-function correlation of the fastest myosin. This review article is an extended version of the Japanese article, \"Structure-function Relationship of the Fastest Myosin\" by Ito et al., published in SEIBUTSU BUTSURI Vol. 63, p. 91-96 (2023).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轴突动力蛋白是能动纤毛的驱动力,而细胞质动力蛋白在负端定向的细胞内运输中起着至关重要的作用。它们的分子结构对于理解纤毛跳动和货物运输的分子机制是必不可少的。在对细胞质动力蛋白进行一些初步结构分析后,用基因工程更容易操纵,使用X射线晶体学和单粒子低温电子显微镜,已经发表了许多轴突动力蛋白的原子和伪原子结构分析。目前,动力冲程后构象中的动力蛋白的几种结构以及动力冲程前构象中的几种结构是可用的。值得系统地比较不同来源和不同状态下动力蛋白的构象,了解它们在生物学功能中的作用。在这次审查中,我们将概述已发表的细胞质和轴突动力蛋白的高和中分辨率结构,比较其核心运动结构域的高分辨率结构和各种核苷酸状态下的整体尾部构象,并讨论了它们的力产生机理。
    Axonemal dyneins are the driving force of motile cilia, while cytoplasmic dyneins play an essential role in minus-end oriented intracellular transport. Their molecular structure is indispensable for an understanding of the molecular mechanism of ciliary beating and cargo transport. After some initial structural analysis of cytoplasmic dyneins, which are easier to manipulate with genetic engineering, using X-ray crystallography and single-particle cryo-electron microscopy, a number of atomic and pseudo-atomic structural analyses of axonemal dyneins have been published. Currently, several structures of dyneins in the post-power stroke conformation as well as a few structures in the pre-power stroke conformation are available. It will be worth systematically comparing conformations of dynein motor proteins from different sources and at different states, to understand their role in biological function. In this review, we will overview published high- and intermediate-resolution structures of cytoplasmic and axonemal dyneins, compare the high-resolution structures of their core motor domains and overall tail conformations at various nucleotide states, and discuss their force generation mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胶质细胞通过分泌可溶性因子为神经元和神经组织的细胞外区室提供物理和化学支持和保护。不溶性支架,和囊泡。此外,神经胶质细胞通过重塑其物理微环境和改变其附近不同细胞类型的生理特性而具有再生能力。各种类型的异常胶质细胞和巨噬细胞与人类疾病有关,障碍,和恶性肿瘤。我们以前证明了跨膜蛋白,TMEM230通过分泌促血管生成因子和金属蛋白酶而具有组织血运重建和再生能力,诱导内皮细胞发芽和通道形成。在健康的正常神经组织中,TMEM230主要表达于神经胶质细胞和细胞中,提示在神经组织稳态中的重要作用。通过与RNASET2共表达支持TMEM230对内膜系统的调节(溶酶体,线粒体,和囊泡)和STEAP家族成员(高尔基复合体)。胶质细胞成分的细胞内运输和细胞外分泌与内吞作用有关,运动蛋白介导的胞吐和吞噬作用。贩运成分包括金属蛋白,金属蛋白酶,聚糖,和糖缀合物加工和消化酶,在吞噬体和囊泡中发挥作用,以调节正常的神经组织微环境,稳态,应激反应,以及神经组织损伤或变性后的修复。异常高持续水平TMEM230促进金属蛋白表达,运输和分泌有助于高肿瘤级别神经胶质瘤的肿瘤相关浸润和血管过度形成。中枢神经或外周系统损伤后,TMEM230超常调节的上调促进组织伤口愈合,通过激活神经胶质和巨噬细胞产生的微通道/微管(称为血管模仿)和血管发芽和分支来进行重塑和血运重建。我们的结果支持TMEM230可能充当神经胶质瘤和神经胶质增生中一大类金属蛋白的运输和区室化的运动蛋白的主要调节因子。
    Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    驱动蛋白是真核微管运动蛋白,细分为具有不同功能作用的保守家族。虽然许多驱动蛋白家族在真核生物中普遍存在,每个生物谱系都保持着一个独特的驱动蛋白库,由许多具有不同数量基因的家族组成。先前的基因组研究表明,陆地植物驱动蛋白库与其他真核生物明显不同。为了确定植物进化过程中库存物何时发散,我们在24个代表性植物中对驱动蛋白进行了强大的系统发育分析,两种藻类,两只动物,和一个酵母。这些分析表明,驱动蛋白库的扩展和收缩与藻类和陆地植物生物学的重大变化相吻合。一个驱动蛋白家族和五个亚家族,每个都由独特的域架构定义,出现在绿藻中。其中四个驱动蛋白群体在现代陆地植物的祖先中扩展,而其他六个驱动蛋白组则在带有花粉的植物的祖先中丢失。苔藓和被子植物谱系中发生了不同的驱动蛋白家族和亚家族的扩展。其他驱动蛋白家族保持稳定,并且在整个植物进化过程中没有扩展。总的来说,这些数据支持藻类中驱动蛋白结构域结构的辐射,然后对陆地植物不同谱系中的驱动蛋白家族和亚家族进行不同的正选择和负选择。
    Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在真核生物中,泛素-蛋白酶体系统负责细胞内蛋白质的降解。带有泛素标记的蛋白质被26S蛋白酶体的19S调节颗粒(RP)上的泛素受体识别,展开,通过RP的易位通道路由,然后在20S核心颗粒(CP)中降解。RP的Rpt亚基的pore-1环上的芳香桨抓住底物并将折叠的区域拉入通道,从而展开它们。因此,预期芳香桨在展开基材时抓握的顺序会影响展开的程度。和低复杂度序列已被证明会干扰抓地力。然而,展开蛋白质时抓地力的详细空间要求,特别是从N端,仍然未知。我们确定了富含甘氨酸的束相对于折叠结构域的位置如何损害展开。我们发现,与以前的报告相比,更靠近折叠结构域插入富含甘氨酸的序列比将它们定位在更远的地方更能降低解折叠能力。对展开具有最大影响的位置映射到预测芳香桨与底物相互作用的区域上。对从远离折叠结构域的多达67个氨基酸的位置解折叠的影响表明,在底物和蛋白酶体之间存在除芳香桨之外的促进底物易位的额外相互作用。总之,本研究通过绘制展开过程中底物和蛋白酶体之间相互作用的间距,加深了对底物通道内机械相互作用的理解。
    In eukaryotes, the ubiquitin-proteasome system is responsible for intracellular protein degradation. Proteins tagged with ubiquitin are recognized by ubiquitin receptors on the 19S regulatory particle (RP) of the 26S proteasome, unfolded, routed through the translocation channel of the RP, and are then degraded in the 20S core particle (CP). Aromatic paddles on the pore-1 loops of the RP\'s Rpt subunits grip the substrate and pull folded domains into the channel, thereby unfolding them. The sequence that the aromatic paddles grip while unfolding a substrate is therefore expected to influence the extent of unfolding, and low complexity sequences have been shown to interfere with grip. However, the detailed spatial requirements for grip while unfolding proteins, particularly from the N-terminus, remain unknown. We determined how the location of glycine-rich tracts relative to a folded domain impairs unfolding. We find that, in contrast to a previous report, inserting glycine-rich sequences closer to the folded domain reduced unfolding ability more than positioning them further away. Locations that have the biggest effect on unfolding map onto the regions where the aromatic paddles are predicted to interact with the substrate. Effects on unfolding from locations up to 67 amino acids away from the folded domain suggest that there are additional interactions between the substrate and the proteasome beyond the aromatic paddles that facilitate translocation of the substrate. In sum, this study deepens understanding of the mechanical interactions within the substrate channel by mapping the spacing of interactions between the substrate and the proteasome during unfolding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌球蛋白是与肌动蛋白细胞骨架相关的重要运动蛋白。在结构上,肌球蛋白作为异聚复合物,其中较小的轻链,如钙调蛋白(CaM),与颈部区域的异亮氨酸-谷氨酰胺(IQ)域结合以促进机械酶活性。我们最近鉴定了拟南芥CaM样(CML)蛋白CML13和CML14作为含有多个IQ域的蛋白质的相互作用者,包括肌球蛋白VIII.这里,我们证明了CaM,CML13和CML14结合所有四种拟南芥肌球蛋白VIII同工型的颈部区域。在测试与肌球蛋白VIIIs结合的CML中,CaM,CML13和CML14在植物分裂荧光素酶蛋白相互作用测定中给出最强的信号。体外,重组CaM,CML13和CML14显示出特异性,高亲和力,与肌球蛋白VIIIs的IQ结构域不依赖钙的结合。CaM,当与含有IQ和肌球蛋白VIIIs尾部结构域的红色荧光蛋白-肌球蛋白融合蛋白共表达时,CML13和CML14共定位在质膜结合的斑点上。使用重组肌球蛋白VIIIs的体外肌动蛋白运动试验表明,CaM,CML13和CML14用作轻链。使用RNA沉默抑制CML13或CML14表达导致下胚轴表型缩短,类似于在四重肌球蛋白突变体中观察到的,肌球蛋白vii4KO.总的来说,我们的数据表明拟南芥CML13和CML14是新的肌球蛋白VIII轻链。
    Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,我们考虑以轴突轴短暂扩张为特征的大型货物囊泡的轴突运输。我们的目标是建立一个数学模型,该模型可以捕获此类货物囊泡与膜相关的周期性细胞骨架结构(MPS)的动态机械相互作用。它由规则间隔的肌动蛋白环组成,这些肌动蛋白环横向于轴突的纵向方向,并参与轴突的径向收缩。建立了一个力平衡方程组,通过该方程组,我们将横向环描述为粘弹性Kelvin-Voigt元素。在均质化限制中,我们将模型重新定义为膜下MPS与大囊泡相互作用的自由边界问题。我们得出非线性力-速度关系作为准稳态解。在计算上,我们分析了传输速度对囊泡尺寸的依赖性,并使用渐近近似将其表述为可以通过实验测试的幂律。
    In this study, we consider axonal transport of large cargo vesicles characterised by transient expansion of the axon shaft. Our goal is to formulate a mathematical model which captures the dynamic mechanical interaction of such cargo vesicles with the membrane associated periodic cytoskeletal structure (MPS). It consists of regularly spaced actin rings that are transversal to the longitudinal direction of the axon and involved in the radial contraction of the axon. A system of force balance equations is formulated by which we describe the transversal rings as visco-elastic Kelvin-Voigt elements. In a homogenisation limit, we reformulate the model as a free boundary problem for the interaction of the submembranous MPS with the large vesicle. We derive a non-linear force-velocity relation as a quasi-steady state solution. Computationally we analyse the vesicle size dependence of the transport speed and use an asymptotic approximation to formulate it as a power law that can be tested experimentally.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    常规驱动蛋白-1是用于运输细胞货物的细胞中的主要顺行运动。虽然有一个共识,驱动蛋白-1的C末端尾部抑制运动,全长自抑制驱动蛋白-1的分子结构仍然未知。这里,我们结合了交联质谱(XL-MS),电子显微镜(EM),和AlphaFold结构预测,以确定全长自抑制驱动蛋白-1同二聚体(驱动蛋白-1重链[KHC])和驱动蛋白-1异四聚体(KHC与驱动蛋白轻链1[KLC1]结合)的结构。我们的综合分析表明,驱动蛋白1形成一个紧凑的,通过卷曲螺旋3中的断裂弯曲构象。此外,我们的XL-MS分析表明驱动蛋白轻链稳定折叠的抑制状态,而不是诱导新的结构状态。使用我们的结构模型,我们证明了电机之间的多种相互作用的中断,茎,和尾结构域需要激活全长驱动蛋白-1。我们的工作提供了一个概念框架,用于理解货物衔接子和微管相关蛋白如何缓解自抑制以促进激活。
    Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine crosslinking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer (kinesin-1 heavy chain [KHC]) and kinesin-1 heterotetramer (KHC bound to kinesin light chain 1 [KLC1]). Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled-coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视杆和视锥是视网膜中的感光神经元,是脊椎动物视觉感觉所必需的,正确的蛋白质定位和分隔对于光转导和视觉功能至关重要。在人类视网膜疾病中,不适当的蛋白质转运到外段(OS)或蛋白质错误定位到内段(IS)可能导致视觉反应受损和感光细胞变性,导致视觉功能的丧失。我们显示了一种非常规运动蛋白的参与,MYO1C,在视紫红质对OS的正确定位中,在哺乳动物模型中MYO1C的缺失导致视紫红质在IS和细胞体中的错误定位,导致逐渐严重的视网膜表型。在这项研究中,使用建模和对接分析,我们旨在确定MYO1C和视紫红质之间的蛋白质-蛋白质相互作用位点,以建立一个假设,即这些蛋白质之间的物理相互作用对于视紫红质的正常运输和视觉功能是必需的.
    Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, where proper protein localization and compartmentalization are critical for phototransduction and visual function. In human retinal diseases, improper protein transport to the outer segment (OS) or mislocalization of proteins to the inner segment (IS) could lead to impaired visual responses and photoreceptor cell degeneration, causing a loss of visual function. We showed involvement of an unconventional motor protein, MYO1C, in the proper localization of rhodopsin to the OS, where loss of MYO1C in a mammalian model caused mislocalization of rhodopsin to IS and cell bodies, leading to progressively severe retinal phenotypes. In this study, using modeling and docking analysis, we aimed to identify the protein-protein interaction sites between MYO1C and Rhodopsin to establish a hypothesis that a physical interaction between these proteins is necessary for the proper trafficking of rhodopsin and visual function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号