monophosphoryl lipid A

单磷酰脂质 A
  • 文章类型: Journal Article
    免疫佐剂是增强对弱免疫原性抗原的持久适应性免疫应答的疫苗组分。单磷酰脂质A(MPLA)是一种有效且安全的疫苗佐剂,可通过与Toll样受体4(TLR4)结合而引发早期先天性免疫反应。重要的是,结合和识别过程高度依赖于MPLA的单体状态。然而,当前的疫苗递送系统通常优先考虑提高MPLA的装载效率,而忽略了维持其单体形式以获得最佳免疫激活的需要。这里,我们介绍了Pickering乳液引导的MPLA单体递送系统(PMMS),将MPLA嵌入油水界面以实现MPLA的单体负载。在与抗原呈递细胞的相互作用中,PMMS充当MPLA的监护人,无论是否存在脂多糖结合蛋白,都能促进TLR4的有效识别。在注射部位,PMMS有效地引发局部免疫反应,随后促进抗原内化的树突状细胞向淋巴结的迁移。在引流淋巴结内,PMMS增强树突状细胞的抗原呈递和成熟。在C57BL/6小鼠模型中,PMMS疫苗接种激发了有效的基于抗原特异性CD8+T细胞的免疫应答。此外,PMMS对E.G7-OVA淋巴瘤表现出强烈的抗肿瘤作用。这些数据表明,PMMS提供了用于递送单体MPLA以实现稳健的细胞免疫应答和有效的癌症免疫疗法的直接且有效的策略。
    Immunological adjuvants are vaccine components that enhance long-lasting adaptive immune responses to weakly immunogenic antigens. Monophosphoryl lipid A (MPLA) is a potent and safe vaccine adjuvant that initiates an early innate immune response by binding to the Toll-like receptor 4 (TLR4). Importantly, the binding and recognition process is highly dependent on the monomeric state of MPLA. However, current vaccine delivery systems often prioritize improving the loading efficiency of MPLA, while neglecting the need to maintain its monomeric form for optimal immune activation. Here, we introduce a Pickering emulsion-guided MPLA monomeric delivery system (PMMS), which embed MPLA into the oil-water interface to achieve the monomeric loading of MPLA. During interactions with antigen-presenting cells, PMMS functions as a chaperone for MPLA, facilitating efficient recognition by TLR4 regardless of the presence of lipopolysaccharide-binding proteins. At the injection site, PMMS efficiently elicited local immune responses, subsequently promoting the migration of antigen-internalized dendritic cells to the lymph nodes. Within the draining lymph nodes, PMMS enhanced antigen presentation and maturation of dendritic cells. In C57BL/6 mice models, PMMS vaccination provoked potent antigen-specific CD8+ T cell-based immune responses. Additionally, PMMS demonstrated strong anti-tumor effects against E.G7-OVA lymphoma. These data indicate that PMMS provides a straightforward and efficient strategy for delivering monomeric MPLA to achieve robust cellular immune responses and effective cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    免疫刺激复合物(ISCOMs)是由皂苷自组装形成的安全有效的基于皂苷的佐剂,胆固醇,和磷脂在水中形成直径30-40nm的笼状颗粒。在ISCOM颗粒中包含Toll样受体4激动剂单磷酰脂质A(MPLA)产生有希望的下一代佐剂,称为皂苷-MPLA纳米颗粒(SMNP)。在这项工作中,我们详细介绍了通过切向流过滤(TFF)工艺生产ISCOMs或SMNP的方案,该工艺适用于可扩展的合成和良好生产规范(GMP)生产临床级佐剂。将SMNP或ISCOM组分溶解在表面活性剂MEGA-10的胶束中,然后稀释到低于表面活性剂的临界胶束浓度(CMC)以驱动ISCOM自组装。发现使用临床级皂苷佐剂中使用的纯化皂苷QS-21组装ISCOM/SMNP颗粒需要控制初始胶束溶液的逐步稀释,以防止形成不期望的动力学捕获的聚集体物种。基于QS-21的初始进料,优化的方案给出〜77%的产率,并且最终的SMNP颗粒组成反映了组分的进料比。Further,样品是高度均匀的,其质量与通过透析在实验室规模制备并通过尺寸排阻色谱法纯化的材料的质量相当.该方案可用于基于ISCOM的疫苗佐剂和治疗剂的临床制备。
    Immune stimulating complexes (ISCOMs) are safe and effective saponin-based adjuvants formed by the self-assembly of saponin, cholesterol, and phospholipids in water to form cage-like 30-40 nm diameter particles. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) in ISCOM particles yields a promising next-generation adjuvant termed Saponin-MPLA NanoParticles (SMNP). In this work, we detail protocols to produce ISCOMs or SMNP via a tangential flow filtration (TFF) process suitable for scalable synthesis and Good Manufacturing Practice (GMP) production of clinical-grade adjuvants. SMNP or ISCOM components were solubilized in micelles of the surfactant MEGA-10, then diluted below the critical micelle concentration (CMC) of the surfactant to drive ISCOM self-assembly. Assembly of ISCOM/SMNP particles using the purified saponin QS-21 used in clinical-grade saponin adjuvants was found to require controlled stepwise dilution of the initial micellar solution, to prevent formation of undesirable kinetically-trapped aggregate species. An optimized protocol gave yields of ~77% based on the initial feed of QS-21 and the final SMNP particle composition mirrored the feed ratios of the components. Further, samples were highly homogeneous with comparable quality to that of material prepared at lab scale by dialysis and purified via size-exclusion chromatography. This protocol may be useful for clinical preparation of ISCOM-based vaccine adjuvants and therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了提高耐甲氧西林金黄色葡萄球菌疫苗(MRSA)的有效性,新一代的免疫系统刺激佐剂是必要的,以及其他佐剂。在一些疫苗中,单磷酰脂质A(MPLA)作为toll样受体4激动剂目前用作佐剂或共佐剂。MPLA可以增加免疫应答和疫苗免疫原性。本研究评估了在MPLA和明矾中配制的重组自溶素作为共佐剂/佐剂的免疫原性和抗MRSA功效。r-自溶素通过Ni-NTA亲和层析表达和纯化,并通过SDS-PAGE表征。然后,制备了MPLA和明矾中的疫苗候选制剂。为了研究免疫原性反应,总IgG,同种型(IgG1和IgG2a)水平,和细胞因子(IL-4,IL-12,TNF-α,和IFN-γ)谱通过ELISA评估。此外,内脏器官的细菌负担,调理吞噬作用,存活率,并比较各组间病理改变。结果表明,用r-自溶素+明矾+MPLA合成和r-自溶素+明矾+MPLABiological免疫的小鼠导致调理素抗体水平升高,IgG1,IgG2a同种型以及细胞因子谱水平升高,与其他实验组相比。更重要的是,用MPLA和r-自溶素免疫的小鼠表现出死亡率和细菌负担的降低,与对照组相比。在r-自溶素+明矾+MPLA合成组中观察到最高的存活水平。我们得出的结论是两种MPLA形式,合成和生物,是针对MRSA感染的免疫应答改善的可靠候选者。
    To increase the effectiveness of methicillin-resistant Staphylococcus aureus vaccines (MRSA), a new generation of immune system stimulating adjuvants is necessary, along with other adjuvants. In some vaccines, monophosphoryl lipid A (MPLA) as a toll-like receptor 4 agonist is currently used as an adjuvant or co-adjuvant. MPLA could increase the immune response and vaccine immunogenicity. The current investigation assessed the immunogenicity and anti-MRSA efficacy of recombinant autolysin formulated in MPLA and Alum as co-adjuvant/adjuvant. r-Autolysin was expressed and purified by Ni-NTA affinity chromatography and characterized by SDS-PAGE. Then, the vaccine candidate formulation in MPLAs and Alum was prepared. To investigate the immunogenic responses, total IgG, isotype (IgG1 and IgG2a) levels, and cytokines (IL-4, IL-12, TNF-α, and IFN-γ) profiles were evaluated by ELISA. Also, the bacterial burden in internal organs, opsonophagocytosis, survival rate, and pathobiology changes was compared among the groups. Results demonstrated that mice immunized with the r-Autolysin + Alum + MPLA Synthetic and r-Autolysin + Alum + MPLA Biologic led to increased levels of opsonic antibodies, IgG1, IgG2a isotype as well as increased levels of cytokines profiles, as compared with other experimental groups. More importantly, mice immunized with MPLA and r-Autolysin exhibited a decrease in mortality and bacterial burden, as compared with the control group. The highest level of survival was seen in the r-Autolysin + Alum + MPLA Synthetic group. We concluded that both MPLA forms, synthetic and biological, are reliable candidates for immune response improvement against MRSA infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在COVID-19大流行期间,由于缺乏安全有效的原料,便利的疫苗生产已经放缓,如佐剂,增强疫苗功效的必要成分。单磷酰脂质A(MPLA)是用于人类疫苗的有效和安全的佐剂,包括带状疱疹疫苗,Shingrix.3-O-去酰基-4'-单磷酰基脂质A(MPL),由GSK商业化的代表性MPLA佐剂,通过从鼠伤寒沙门氏菌R595分离的前体的化学转化制备。然而,这些材料的高价格限制了它们在优质疫苗中的使用。为对抗疫苗安全原料的稀缺性和高成本,我们需要开发一种可行的MPLA生产方法,该方法易于扩大规模以满足工业要求。在这项研究中,我们在大肠杆菌中设计了肽聚糖和外膜生物合成途径,并开发了大肠杆菌菌株,KHSC0055,组成型产生EcML(E.大肠杆菌产生的单磷酰脂质A),不含抗生素或过表达诱导剂等添加剂。通过高密度补料分批发酵在工业规模上优化了EcML生产,并从30-L规模的发酵中获得2.7g的EcML(约135,000剂量的疫苗)。使用KHSC0055,我们简化了MPLA的生产过程,降低了生产成本。然后,我们使用从KHSC0055纯化的EcML作为目前在菲律宾进行临床试验III期的COVID-19候选疫苗(EuCorVac-19)的佐剂.通过探索EcML在人类中的疗效和安全性,我们建立了KHSC0055作为MPLA佐剂生产的高效细胞工厂。
    During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4\'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595. However, the high price of these materials limits their use in premium vaccines. To combat the scarcity and high cost of safe raw materials for vaccines, we need to develop a feasible MPLA production method that is easily scaled up to meet industrial requirements. In this study, we engineered peptidoglycan and outer membrane biosynthetic pathways in Escherichia coli and developed a Escherichia coli strain, KHSC0055, that constitutively produces EcML (E. coli-produced monophosphoryl lipid A) without additives such as antibiotics or overexpression inducers. EcML production was optimized on an industrial scale via high-density fed-batch fermentation, and obtained 2.7 g of EcML (about 135,000 doses of vaccine) from a 30-L-scale fermentation. Using KHSC0055, we simplified the production process and decreased the production costs of MPLA. Then, we applied EcML purified from KHSC0055 as an adjuvant for a COVID-19 vaccine candidate (EuCorVac-19) currently in clinical trial stage III in the Philippines. By probing the efficacy and safety of EcML in humans, we established KHSC0055 as an efficient cell factory for MPLA adjuvant production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一种新的假结核耶尔森氏菌突变株,携带lpxE插入和pmrF-J缺失的YptbS46被构建并显示出仅产生具有佐剂性质的单磷酰脂质A(MPLA)。从带有lcrV表达质粒的YptbS46分离的外膜囊泡(OMV),pSMV13,被指定为OMV46-LcrV,它含有MPLA和大量的LcrV(低钙反应V),并显示出Toll样受体4(TLR4)的低活化。用30µgOMV46-LcrV进行的肌内初免免疫比亲本OMV44-LcrV显示出大大降低的反应原性,并为小鼠提供了针对高剂量呼吸道鼠疫耶尔森氏菌攻击的完全保护。OMV46-LcrV免疫在肺粘膜和全身区室中诱导强烈的适应性反应,并在肺中协调先天免疫。这与鼠疫耶尔森氏菌攻击期间的快速细菌清除和不显著的肺损伤相关。此外,OMV46-LcrV免疫赋予长期保护。此外,用减少剂量的OMV46-LcrV进行免疫显示出进一步降低的反应原性,并且仍然对肺炎鼠疫提供了很好的保护。这些研究有力地证明了OMV46-LcrV作为新型鼠疫疫苗候选物的可行性。
    A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂质体由于其固有的生物相容性和作为递送载体的多功能性而被用作疫苗佐剂和抗原的载体。蛋白抗原与脂质体配制的免疫刺激佐剂的两瓶混合物已成为广泛使用的临床疫苗制备方法。与自由可溶性抗原相比,脂质体结合形式可以增强抗原向抗原呈递细胞的递送,并与佐剂共同递送抗原,导致疫苗效力的提高。
    已经为蛋白质开发了几种脂质体疫苗的抗原捕获策略,肽,和核酸。讨论了特定的抗原递送方法,包括静电吸附,包封在脂质体水性核心内,以及共价和非共价抗原捕获。
    几种商业疫苗包括活性脂质成分,脂质体和脂质纳米粒在疫苗开发中的作用日益突出。利用脂质体结合抗原提供了潜在的优势,包括抗原和佐剂剂量节省,将抗原和佐剂共同递送至免疫细胞,和增强的免疫原性。通过脂质体捕获抗原已经在临床试验中证明了可行性。已经开发了新的抗原捕获技术,并且似乎对疫苗开发感兴趣。
    Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy.
    Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture.
    Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干扰素基因(STING)的刺激物从内质网(ER)到ER-高尔基体中间区室(ERGIC)的易位使其活化。然而,STING退出急诊室的调节机制仍然难以捉摸。这里,我们发现STING以TAK1结合蛋白1(TAB1)依赖性方式在STING运输之前诱导转化生长因子β激活激酶1(TAK1)的激活。有趣的是,激活的TAK1直接介导丝氨酸355上的STING磷酸化,从而促进其与STINGER退出蛋白(STEEP)的相互作用,从而促进其低聚和易位到ERGIC进行后续激活。重要的是,通过单磷酰脂质A激活TAK1,TLR4激动剂,在小鼠同种异体移植肿瘤模型中,cGAMP诱导的抗肿瘤免疫依赖于STING磷酸化。一起来看,TAK1通过促进其贩运被确定为STING激活的检查站,为肿瘤联合免疫治疗和干预STING相关疾病提供依据。
    The translocation of stimulator of interferon genes (STING) from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) enables its activation. However, the mechanism underlying the regulation of STING exit from the ER remains elusive. Here, we found that STING induces the activation of transforming growth factor beta-activated kinase 1 (TAK1) prior to STING trafficking in a TAK1 binding protein 1 (TAB1)-dependent manner. Intriguingly, activated TAK1 directly mediates STING phosphorylation on serine 355, which facilitates its interaction with STING ER exit protein (STEEP) and thereby promotes its oligomerization and translocation to the ERGIC for subsequent activation. Importantly, activation of TAK1 by monophosphoryl lipid A, a TLR4 agonist, boosts cGAMP-induced antitumor immunity dependent on STING phosphorylation in a mouse allograft tumor model. Taken together, TAK1 was identified as a checkpoint for STING activation by promoting its trafficking, providing a basis for combinatory tumor immunotherapy and intervention in STING-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暴露于病原体相关的分子模式(PAMP)诱导增加,对后续感染的广谱抗菌反应,一种称为先天免疫记忆的现象。这项研究检查了β-葡聚糖治疗的效果,真菌衍生的Dectin-1配体,或单磷酰脂质A(MPLA),细菌衍生的TLR4配体,关于先天免疫记忆,重点是识别由这些不同的PAMPs激活的常见细胞和分子途径。任何一种PAMP治疗都可以通过促进先天白细胞动员到血液中,使先天免疫系统对体内铜绿假单胞菌感染产生更强烈的反应。白细胞募集到感染部位,微生物清除的增加和细胞因子产生的减弱。离体巨噬细胞检查显示代谢扩增,吞噬作用,用任何一种药物治疗后呼吸爆发,尽管MPLA更有力地增强了这些活性,并更有效地促进了细菌的杀灭。两种药物都激活了控制炎症的巨噬细胞中的基因表达途径,抗菌功能和蛋白质合成以及抑制细胞分裂的途径。β-葡聚糖处理最低限度地改变响应LPS攻击的巨噬细胞差异基因表达,而MPLA减弱LPS诱导的转录反应的幅度。尤其是细胞因子基因表达。这些结果表明β-葡聚糖和MPLA同样增强了体内对感染的先天反应。然而,MPLA更有效地诱导巨噬细胞代谢的改变,抗菌功能,基因转录和对LPS的反应。
    Exposure to pathogen-associated molecular patterns (PAMPs) induces an augmented, broad-spectrum antimicrobial response to subsequent infection, a phenomenon termed innate immune memory. This study examined the effects of treatment with β-glucan, a fungus-derived dectin-1 ligand, or monophosphoryl lipid A (MPLA), a bacteria-derived Toll-like receptor 4 ligand, on innate immune memory with a focus on identifying common cellular and molecular pathways activated by these diverse PAMPs. Treatment with either PAMP prepared the innate immune system to respond more robustly to Pseudomonas aeruginosa infection in vivo by facilitating mobilization of innate leukocytes into blood, recruitment of leukocytes to the site of infection, augmentation of microbial clearance, and attenuation of cytokine production. Examination of macrophages ex vivo showed amplification of metabolism, phagocytosis, and respiratory burst after treatment with either agent, although MPLA more robustly augmented these activities and more effectively facilitated killing of bacteria. Both agents activated gene expression pathways in macrophages that control inflammation, antimicrobial functions, and protein synthesis and suppressed pathways regulating cell division. β-glucan treatment minimally altered macrophage differential gene expression in response to lipopolysaccharide (LPS) challenge, whereas MPLA attenuated the magnitude of the LPS-induced transcriptional response, especially cytokine gene expression. These results show that β-glucan and MPLA similarly augment the innate response to infection in vivo. Yet, MPLA more potently induces alterations in macrophage metabolism, antimicrobial functions, gene transcription and the response to LPS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着癌症的进展,肿瘤细胞适应逃避免疫细胞。为了对抗这个,癌细胞可以离体硅化,创建可以用易于被抗原呈递细胞(APC)识别的微生物相关分子装饰的表面掩模。转化过程使肿瘤细胞不能存活并保持细胞和相关肿瘤抗原的完整性。由此产生的个性化癌症疫苗,当回到病人身边时,接合APC表面的分子,激活导致免疫细胞活化的信号通路,疫苗内化,肿瘤抗原的加工,和主要组织相容性复合肽呈递给T细胞。然后癌症特异性T细胞在全身循环,杀死肿瘤细胞。本章介绍了在细胞结构上低温沉淀二氧化硅的详细方法(低温硅化),创造有效免疫激活剂的疫苗。Further,硅化细胞可以脱水储存,消除了昂贵的低温存储的需要。
    As cancer progresses, tumor cells adapt to evade immune cells. To counter this, cancer cells can be silicified ex vivo, creating surface masks that can be decorated with microbial-associated molecules that are readily recognized by antigen-presenting cells (APCs). The transformation process renders the tumor cells nonviable and preserves the integrity of the cell and associated tumor antigens. The resulting personalized cancer vaccine, when returned to the patient, engages molecules on the surface of APC, activating signaling pathways that lead to immune cell activation, vaccine internalization, processing of tumor antigens, and major histocompatibility complex peptide presentation to T cells. The cancer-specific T cells then circulate throughout the body, killing tumor cells. This chapter presents detailed methods for the cryogenic precipitation of silica on cellular structures (cryo-silicification), creating vaccines that are potent immune activators. Further, silicified cells can be dehydrated for shelf storage, eliminating the need for costly cryogenic storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    带有QS21(ALFQ)的陆军脂质体制剂,疫苗佐剂的制备,包含含有饱和磷脂的脂质体,与55摩尔%的胆固醇相对于磷脂,和两种佐剂,单磷酰脂质A(MPLA)和QS21皂苷。ALFQ的一个独特特征是形成直径>1.0µm的巨大单层囊泡(GUV),由于在将QS21添加到含有MPLA和相对于总磷脂55mol%的胆固醇的纳米脂质体中时引发了显着的融合事件。这导致ALFQ颗粒的多分散尺寸分布,直径范围从~50nm到~30,000nm。这项工作的目的是深入了解导致QS21诱导的GUV的纳米囊泡的独特融合反应。通过比较从ALFQ纯化的囊泡的脂质组成和结构来探测该融合反应,>1µm(即,GUV)和直径<1µm的较小囊泡。这里,我们证明了差速离心后,胆固醇,MPLA,脂质体磷脂双层中的QS21主要存在于GUV中(在颗粒中)。大概,这是通过从纳米尺寸到微米尺寸颗粒的过渡过程中的快速横向扩散而发生的。而脂质体磷脂在颗粒和上清液中的重量回收率分别为44%和36%,分别,胆固醇的重量百分比更高(〜88%),MPLA(94%),和QS21(96%)在含有GUV的颗粒中回收,和≤10%的这些单独的脂质体成分在上清液中回收。尽管ALFQ具有多分散性,大部分的胆固醇,几乎所有的佐剂分子,存在于GUV中。我们假设QS21与胆固醇的结合导致了新的结构纳米结构域,随后在脂质双层中的交织体偶联可能引发了融合过程,导致创建GUV。然而,MPLA和QS21的极地区域一起有十个糖的“糖草坪”,其亲水性可能为GUV中MPLA和QS21的快速横向扩散和浓缩提供了驱动力。
    Army Liposome Formulation with QS21 (ALFQ), a vaccine adjuvant preparation, comprises liposomes containing saturated phospholipids, with 55 mol% cholesterol relative to the phospholipids, and two adjuvants, monophosphoryl lipid A (MPLA) and QS21 saponin. A unique feature of ALFQ is the formation of giant unilamellar vesicles (GUVs) having diameters >1.0 µm, due to a remarkable fusion event initiated during the addition of QS21 to nanoliposomes containing MPLA and 55 mol% cholesterol relative to the total phospholipids. This results in a polydisperse size distribution of ALFQ particles, with diameters ranging from ~50 nm to ~30,000 nm. The purpose of this work was to gain insights into the unique fusion reaction of nanovesicles leading to GUVs induced by QS21. This fusion reaction was probed by comparing the lipid compositions and structures of vesicles purified from ALFQ, which were >1 µm (i.e., GUVs) and the smaller vesicles with diameter <1 µm. Here, we demonstrate that after differential centrifugation, cholesterol, MPLA, and QS21 in the liposomal phospholipid bilayers were present mainly in GUVs (in the pellet). Presumably, this occurred by rapid lateral diffusion during the transition from nanosize to microsize particles. While liposomal phospholipid recoveries by weight in the pellet and supernatant were 44% and 36%, respectively, higher percentages by weight of the cholesterol (~88%), MPLA (94%), and QS21 (96%) were recovered in the pellet containing GUVs, and ≤10% of these individual liposomal constituents were recovered in the supernatant. Despite the polydispersity of ALFQ, most of the cholesterol, and almost all of the adjuvant molecules, were present in the GUVs. We hypothesize that the binding of QS21 to cholesterol caused new structural nanodomains, and subsequent interleaflet coupling in the lipid bilayer might have initiated the fusion process, leading to creation of GUVs. However, the polar regions of MPLA and QS21 together have a \"sugar lawn\" of ten sugars, the hydrophilicity of which might have provided a driving force for rapid lateral diffusion and concentration of the MPLA and QS21 in the GUVs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号