mitochondrial permeability transition pore

线粒体通透性转换孔
  • 文章类型: Journal Article
    心肌肌钙蛋白I(cTnI)是心肌细胞收缩的关键调节因子。然而,它在线粒体中的作用是未知的。这里我们显示cTnI定位于心脏的线粒体,在非心脏细胞中稳定表达时抑制线粒体功能,并在氧化应激下增加线粒体通透性过渡孔的开放。直接,cTnI与F1FO-ATP合酶的特异性和可饱和结合在体外使用免疫捕获的ATP合酶和在细胞中使用邻近连接测定得到证实。cTnI结合使ATP酶活性加倍,而与家族性肥厚型心肌病相关的骨骼肌钙蛋白I和几种人类致病性cTnI变体则没有。一种合理设计的肽,P888抑制cTnI与ATP合酶的结合,在体外抑制cTnI诱导的ATP酶活性增加,并在体内短暂性缺血后减少心脏损伤。我们建议cTnI结合的ATP合酶导致较低的ATP水平,在心脏缺血再灌注过程中释放这种相互作用可能会增加功能性线粒体的储备,从而减少心脏损伤。
    Cardiac troponin I (cTnI) is a key regulator of cardiomyocyte contraction. However, its role in mitochondria is unknown. Here we show that cTnI localized to mitochondria in the heart, inhibited mitochondrial functions when stably expressed in noncardiac cells and increased the opening of the mitochondrial permeability transition pore under oxidative stress. Direct, specific and saturable binding of cTnI to F1FO-ATP synthase was demonstrated in vitro using immune-captured ATP synthase and in cells using proximity ligation assay. cTnI binding doubled ATPase activity, whereas skeletal troponin I and several human pathogenic cTnI variants associated with familial hypertrophic cardiomyopathy did not. A rationally designed peptide, P888, inhibited cTnI binding to ATP synthase, inhibited cTnI-induced increase in ATPase activity in vitro and reduced cardiac injury following transient ischemia in vivo. We suggest that cTnI-bound ATP synthase results in lower ATP levels, and releasing this interaction during cardiac ischemia-reperfusion may increase the reservoir of functional mitochondria to reduce cardiac injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑细胞中的细胞内通讯和调节是由普遍存在的Ca2+和氧化还原信号控制的。这两种独立的信号传导系统调节细胞中的大部分过程,包括细胞存活机制或细胞死亡。在生理学中,Ca2可以通过各种酶和线粒体调节和触发活性氧(ROS)的产生,但ROS也可以通过钙通道或磷脂酶活性的修饰将氧化还原信号传递到钙水平。钙或氧化还原信号的变化可能导致导致兴奋毒性或氧化应激的严重病理。钙和ROS的相互作用对于触发线粒体通透性转换孔的打开-细胞凋亡的初始步骤至关重要,Ca2+和ROS诱导的氧化应激参与坏死和铁性凋亡。在这里,我们回顾了细胞溶质和线粒体中氧化还原信号和Ca2+在脑细胞-神经元和星形胶质细胞生理学中的作用,以及这种整合如何导致病理学。包括缺血损伤和神经变性。
    Intracellular communication and regulation in brain cells is controlled by the ubiquitous Ca2+ and by redox signalling. Both of these independent signalling systems regulate most of the processes in cells including the cell surviving mechanism or cell death. In physiology Ca2+ can regulate and trigger reactive oxygen species (ROS) production by various enzymes and in mitochondria but ROS could also transmit redox signal to calcium levels via modification of calcium channels or phospholipase activity. Changes in calcium or redox signalling could lead to severe pathology resulting in excitotoxicity or oxidative stress. Interaction of the calcium and ROS is essential to trigger opening of mitochondrial permeability transition pore - the initial step of apoptosis, Ca2+ and ROS-induced oxidative stress involved in necrosis and ferroptosis. Here we review the role of redox signalling and Ca2+ in cytosol and mitochondria in the physiology of brain cells - neurons and astrocytes and how this integration can lead to pathology, including ischaemia injury and neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑出血(ICH)是中风的第二常见亚型,以高死亡率和不良预后为特征。尽管有各种治疗方法,在过去的几十年中,ICH的预后改善有限.因此,因此,必须确定一种可行的ICH治疗策略.线粒体是存在于大多数真核细胞中的细胞器,并且充当有氧呼吸和能量产生的主要位点。在不利的细胞条件下,线粒体可通过开放线粒体通透性转换孔(mPTP)诱导通透性改变,最终导致线粒体功能障碍并导致各种疾病。最近的研究表明,mPTP在包括帕金森病在内的多种神经退行性疾病的病理过程中起作用。老年痴呆症,亨廷顿病,缺血性中风和缺血再灌注损伤,在其他人中。然而,关于mPTP参与特别是ICH的研究有限。因此,这项研究从氧化应激的角度全面检查了与mPTP相关的病理过程,凋亡,坏死,自噬,铁性凋亡,和其他相关机制,以阐明mPTP参与ICH的潜在机制。本研究旨在为ICH后继发性损伤的治疗提供新的见解。
    Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson\'s disease, Alzheimer\'s disease, Huntington\'s disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体通透性转换孔(mPTP)是一种超分子通道,可调节跨cr膜的溶质交换,在线粒体功能和细胞死亡中具有执行作用。mPTP对正常生理的贡献仍存在争议,尽管有证据表明mPTP参与分化祖细胞的线粒体内膜重塑。这里,我们证明,随着细胞向造血身份转移,对mPTP电导的严格控制会塑造代谢机制。经历内皮到造血转变(EHT)的细胞紧密控制mPTP的主要调节元件。在EHT期间,成熟的动脉内皮会在造血承诺之前限制mPTP活性。在细胞身份转变后,mPTP电导恢复。在子宫内用NIM811处理,一种阻断mPTP对亲环蛋白D(CypD)开放的敏化的分子,扩增造血前体中的氧化磷酸化(OXPHOS)并增加胚胎中的造血。此外,分化多能干细胞(PSC)在敲除CypD基因后获得更大的线粒体cr组织和造血活性,ppif.相反,击倒Opa1,一种对适当的cristae结构至关重要的GTP酶,诱导cr不规则性并损害造血。这些数据阐明了调节造血前体中线粒体成熟的机制,并强调了mPTP在获得造血命运中的作用。
    The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    粘菌素是一种多粘菌素抗生素,由于其在治疗多药耐药(MDR)细菌感染中的功效,目前正在引起新的临床兴趣。急性剂量依赖性肾损伤的频繁发作,有可能导致长期的肾损伤,限制了其使用并阻碍了适当的给药方案,增加治疗期间血浆浓度次优的风险。粘菌素诱导的肾毒性机制已被假定为源于线粒体损伤,然而,没有直接的证据表明粘菌素作为线粒体毒素。这项研究的目的是评估粘菌素是否可以直接诱导线粒体毒性,如果是,揭示潜在的分子机制。我们发现粘菌素导致从小鼠肾脏分离的线粒体的快速通透性转变,这通过线粒体与线粒体过渡孔环孢菌素A或L-肉碱的脱敏剂的共孵育而被完全阻止。在原代培养的小鼠肾小管细胞的实验中证实了L-肉碱的保护作用。始终如一,粘菌素诱导的肾脏损害的相对风险,根据组织学分析以及肾小管损伤的早期标志物计算,Kim-1在体内与L-肉碱共同施用下减半。值得注意的是,左旋肉碱既不影响粘菌素的药代动力学,也不影响其对相关细菌菌株的抗菌活性。总之,粘菌素靶向线粒体并诱导其通透性转变。左旋肉碱在体外预防粘菌素诱导的通透性转变。此外,左卡尼汀共同给药赋予用粘菌素治疗的小鼠部分肾保护作用,而不会干扰其药代动力学和抗菌活性。
    Colistin is a polymyxin antibiotic currently experiencing renewed clinical interest due to its efficacy in the treatment of multidrug resistant (MDR) bacterial infections. The frequent onset of acute dose-dependent kidney injury, with the potential of leading to long-term renal damage, has limited its use and hampered adequate dosing regimens, increasing the risk of suboptimal plasma concentrations during treatment. The mechanism of colistin-induced renal toxicity has been postulated to stem from mitochondrial damage, yet there is no direct evidence of colistin acting as a mitochondrial toxin. The aim of this study was to evaluate whether colistin can directly induce mitochondrial toxicity and, if so, uncover the underlying molecular mechanism. We found that colistin leads to a rapid permeability transition of mitochondria isolated from mouse kidney that was fully prevented by co-incubation of the mitochondria with desensitizers of the mitochondrial transition pore cyclosporin A or L-carnitine. The protective effect of L-carnitine was confirmed in experiments in primary cultured mouse tubular cells. Consistently, the relative risk of colistin-induced kidney damage, calculated based on histological analysis as well as by the early marker of tubular kidney injury, Kim-1, was halved under co-administration with L-carnitine in vivo. Notably, L-carnitine neither affected the pharmacokinetics of colistin nor its antimicrobial activity against relevant bacterial strains. In conclusion, colistin targets the mitochondria and induces permeability transition thereof. L-carnitine prevents colistin-induced permeability transition in vitro. Moreover, L-carnitine co-administration confers partial nephroprotection in mice treated with colistin, without interfering with its pharmacokinetics and antibacterial activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体功能障碍在哮喘的发病机制中至关重要。线粒体通透性转换孔(mPTP)调节线粒体损伤相关分子模式(mtDAMPs)的释放以维持线粒体稳态。Bongkrekic酸(BKA)是mPTP开放的高选择性抑制剂,参与各种疾病的进展。本研究探讨了BKA和mPTP在哮喘发病机制中的确切作用,并阐明了其潜在机制。在本研究中,细胞色素c,其中一个mtDAMPs,哮喘患者的水平升高,并与气道炎症和气道阻塞有关。BKA,mPTP抑制剂显著逆转TDI诱导的气道高反应性,气道炎症,和线粒体功能障碍。用线粒体沉淀预处理,为了模拟mtDAMP的发布,进一步增加TDI诱导的小鼠气道炎症和RAGE的表达。服用RAGE抑制剂,FPS-ZM1,减轻气道炎症,mtDAMPs和TDI诱导的mPTP异常开放和线粒体功能障碍。此外,不同mtDAMPs刺激激活人支气管上皮细胞的RAGE信号。因此,我们的研究表明,在TDI诱导的哮喘中,mPTP是重要的,而BKA是有效缓解炎症的方法.涉及mPTP的正反馈回路,MtDAMPs和RAGE存在于TDI诱导的哮喘中,提示mPTP可能作为哮喘的潜在治疗靶点。
    Mitochondrial dysfunction is critical in the pathogenesis of asthma. Mitochondrial permeability transition pore (mPTP) regulates the release of mitochondrial damage-associated molecular patterns (mtDAMPs) to maintain mitochondrial homeostasis. Bongkrekic acid (BKA) is a highly selective inhibitor of mPTP opening, participates the progression of various diseases. This research investigated the exact roles of BKA and mPTP in the pathogenesis of asthma and elucidated its underlying mechanisms. In the present study, cytochrome c, one of the mtDAMPs, levels were elevated in asthmatic patients, and associated to airway inflammation and airway obstruction. BKA, the inhibitor of mPTP markedly reversed TDI-induced airway hyperresponsiveness, airway inflammation, and mitochondrial dysfunction. Pretreatment with mitochondrial precipitation, to simulate the release of mtDAMPs, further increased TDI-induced airway inflammation and the expression of RAGE in mice. Administration of the inhibitor of RAGE, FPS-ZM1, alleviated the airway inflammation, the abnormal open of mPTP and mitochondrial dysfunction induced by mtDAMPs and TDI. Furthermore, stimulation with different mtDAMPs activated RAGE signaling in human bronchial epithelial cells. Accordingly, our study indicated that mPTP was important and BKA was efficient in alleviating inflammation in TDI-induced asthma. A positive feedback loop involving mPTP, mtDAMPs and RAGE was present in TDI-induced asthma, indicating that mPTP might serve as a potential therapeutic target for asthma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    地中海蓟(菊科;AG)具有二萜葡糖苷;苍术苷和羧基苍术苷与线粒体蛋白腺嘌呤核苷酸易位体(ANT)相互作用并导致ATP抑制。尽管其众所周知的毒性,这种植物仍然会发生急性中毒。虽然大多数症状归因于ANT和二萜相互作用,尚未对AG提取物对各种细胞过程的影响进行深入研究。
    我们测试了体外诱导牛肝线粒体中的线粒体通透性转换孔(MPTP)开口,并使用洋葱试验评估了其细胞毒性和遗传毒性。细胞分裂,有丝分裂指数(MI)和总染色体和有丝分裂畸变(TA),这一切似乎都可能受到ATP短缺的影响,在暴露于鹰嘴豆提取物的洋葱根细胞中进行了研究。
    使用两种不同剂量的两种纯化的AG级分,与标准纯的阿曲奇苷的诱导相比,观察到更强的MPTP诱导。AG水提取物在6种不同剂量下对A.cepa中的根生长具有抑制作用。TA也以剂量依赖的方式增加,而在相同剂量下有丝分裂指数降低。有丝分裂阶段的评估显示AG对A.cepa根的有丝分裂抑制作用。
    这项工作重点介绍了白胶提取物对细胞和线粒体的不利影响。可能对应于ATR衍生物的纯化级分诱导MPTP开放,导致线粒体肿胀及其功能障碍。洋葱试验为树胶遗传毒性和细胞毒性提供了证据。
    UNASSIGNED: The Mediterranean thistle Atractylis gummifera L. (Asteraceae; AG) has diterpenoid glucosides; atractyloside and carboxyatractyloside that interact with mitochondrial protein adenine nucleotide translocator (ANT) and resulted in ATP inhibition. Despite its well-known toxicity, acute poisonings still occur with this plant. Although most symptoms are attributed to ANT and diterpenoids interaction, in-depth investigation of the effects of AG extract on various cellular processes has not been performed.
    UNASSIGNED: We tested in vitro induction of mitochondrial permeability transition pore (MPTP) opening in bovine liver mitochondria and evaluated its cytotoxicity and genotoxicity using Allium cepa test. Cell division, mitotic index (MI) and total chromosomal and mitotic aberrations (TAs), that all seem potentially affected by ATP shortage, were studied in root cells of Allium cepa exposed to Atractylis gummifera extract.
    UNASSIGNED: With the two different doses of two purified AG fractions, stronger induction of MPTP was observed compared to the induction with the standard pure atracyloside. Aqueous AG extract exerted inhibition root growth in A. cepa at 6 different doses. The TAs was increased in a dose-dependent manner too, while mitotic index was decreased at the same doses. Evaluation of mitotic phases revealed mitodepressive effect of AG on A. cepa roots.
    UNASSIGNED: this work highlights cellular and mitochondrial adverse effects of Atractylis gummifera extracts. A purified fraction that likely corresponds to ATR derivatives induces MPTP opening leading to swelling of mitochondria and its dysfunction. Allium cepa test provides the evidence for A. gummifera genotoxicity and cytotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体是造血干细胞(HSC)稳态的关键调节因子。我们的研究通过调节线粒体功能将转录因子Nynrin确定为HSC维持的关键调节因子。Nynrin在稳态和应激条件下在HSC中高度表达。敲除Nynrin降低了HSC频率,休眠,自我更新,线粒体功能障碍增加,表现为mPTP开放异常,线粒体肿胀,和升高的ROS水平。这些变化降低HSC辐射耐受性并促进坏死样表型。相比之下,HSC中Nynrin的过表达降低了辐射(IR)诱导的致死率。Nynrin的缺失激活了Ppif,导致亲环蛋白D(CypD)的过度表达和进一步的线粒体功能障碍。策略,如Ppif单倍体功能不全或CypD的药理学抑制可显着减轻这些影响,恢复Nynrin缺陷小鼠的HSC功能。这项研究确定Nynrin是HSC线粒体功能的关键调节因子,强调在癌症治疗期间保持干细胞活力的潜在治疗靶点。
    Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout Nynrin diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, Nynrin overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates Ppif, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as Ppif haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in Nynrin-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号